前言:我们精心挑选了数篇优质社交媒体的分类文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

第一眼看上去,你就会发现目前的社会化媒体格局是多么的复杂。除了Facebook和Twitter两大社交网络以外,还有近三十种社交产品分类,而每个分类里面少则三五家,多则三五十家。而且大分类里面还有小分类,从管理、分析、数据、评分,到应用、博客、广告、插件等,应有尽有……
上面那张还只是2011年7月之前的数据,其中不包括Pinterest这些后起之秀。而下面这张信息图则统计了几个月前的社会化媒体分类,其中包括Pinterest这些新兴社会化媒体。
和上一张图不同的是,它看起来要干净整洁多了。虽然细看仍能发现社交产品还是那副混乱复杂的局面,但这种周期表的分类方式让我们对社交产品有了更加清晰的认识。
1.1社交媒体的发展推动着高校图书馆与移动社交网络的融合
在移动网络的时代,人们已经习惯于网络环境中的生活和学习方式,传统的生活学习方式已经在悄悄地发生着改变,移动网络的信息能够及时推送、及时交互,手机游戏内容的丰富,手机支付平台的便捷更是令人欣喜,移动网络社交媒体的强大功能极大地满足了人们轻松快捷的生活需求,移动网络社交媒体越来越受到人们的推崇和喜爱,尤其是生活在时尚前沿的高校大学生。以往图书馆传统的信息资源优势已经不复存在了,取而代之的是更为高效高质的移动信息资源传播,高校图书馆正在经历着从未有过的生存发展危机。在这样的移动信息网络时代,高校图书馆可以利用移动网络的优势实现图书馆信息资源最广泛的覆盖,扩展和延伸图书馆的服务,以满足用户的需求。移动社交媒体的高速发展强有力地推动着高校图书馆与移动网络的迅速融合,逐渐呈现出一种全新的实现模式。
1.2高校图书馆与移动社交网络的融合促进了社交媒体的发展
夜上海论坛 当今社会在快速地前进发展,人们的社交形式也在相应地发生着变化,社交形式更加多元化和多样化,这样不断变化发展的社交形式会导致人们更加多元化的个性需求。如何应答这样的需求是移动社交媒体保持自身活力和动力的重要课题。中国互联网络信息中心最新公布的数据显示:截至2014年6月,中国网民规模达6.32亿人,手机网民为5.27亿人,手机上网使用率高达83.4%,首次超过了电脑,其中移动社交媒体使用率是40.7%。这些数据说明在互联网高速发展的时代,更为便捷的社交媒体一定会迅速取代较为传统的社交媒体,在这样的发展道路上谁能更持久地保持强大的动力和新鲜的活力,谁就能赢得用户,那么如何保持动力和活力是关键。实现高校图书馆与移动社交网络的融合发展被证明是确实有效的途径。站在用户的角度来看,多方位、多层次、多角度地满足用户的信息需求就是动力来源。因此,高校图书馆融合社交媒体,其实是把图书馆庞大的信息资源融入移动社交媒体,成为社交媒体最强有力的信息资源保障,进一步拓展了社交媒体的使用价值和服务内容,这样的融合不仅解决了网络环境中的知识源的问题,也可以把图书馆的用户直接转化为移动社交媒体用户,极大地促进了移动网络社交媒体的良性发展。
夜上海论坛 2高校图书馆与移动社交媒体的融合发展
2.1以双方合作共赢为融合发展的利益基础
夜上海论坛 在市场经济时代,尊重双方的利益,共生共赢是双方合作的利益基础。作为商业应用平台的移动社交媒体的发展目标是实现商业价值的最大化,关注的主要是市场赢利;高校图书馆是信息资源平台,其发展方向是信息的最有效利用和最广泛传播,关注的主要是信息服务,双方之间没有绝对的利益冲突,为了自身的发展双方都必须要自我创新,自我完善,不断挖掘用户,最大化满足用户的需求,最后的着眼点都在用户上,这就形成了共同的利益连接,也就是双方融合共赢的利益基础。
2.2以双方资源有效结合为融合发展的技术基础
高校图书馆与移动社交媒体融合最理想的是实现双方优势资源的有效结合,一方面利用移动网络媒体最前沿的信息传播技术;一方面利用高校图书馆最丰富的信息资源储备。要实现这样的合作共赢首先要解决技术上的问题:信息的呈现方式和信息的分类管理。信息的呈现方式直接关系高校图书馆的自身形象和服务内容,好的呈现方式可以展现出欢迎用户的服务姿态,赢得广大用户的心理支持。信息的分类管理是以图书馆的数字化建设为基础的,对大量的纸质文献信息资源进行数字化处理、信息的采集加工、信息的分类重组后的有效信息管理。目前,超星数字图书馆和中国知网等已经开发了一些特色信息服务,做了有益的尝试和探索,这为高校图书馆与移动社交媒体融合提供了更切实可靠的参考依据。
2.3规范法律范围内的著作权保护
〔关键词〕社交媒体;信息可信度;评估;综述
夜上海论坛 〔中图分类号〕G203 〔文献标识码〕A 〔文章编号〕1008-0821(2016)12-0164-06
〔Abstract〕Information credibility assessment research in social media not only contributes to the development and improvement of network information resource management theory,but also helps to improve the effectiveness of social media monitoring public opinion,social media search,social recommendation and so on.The paper firstly reviewed the researches at home and abroad about the social media information research,information credibility research,and social media information credibility assessment research,and then pointed out the problems existing in information credibility assessment research of domestic social media,and finally put forward the solution to it.
〔Key words〕social media;information;credibility;assessment;review
夜上海论坛 1 研究的意义
夜上海论坛 随着互联网技术和移动技术的突飞猛进,社交媒体盛行,人人可做信息的制造者,制造的信息极为丰富。然而,在这丰富信息的背后,隐藏着漫天飞舞的谣言、病毒般传播的虚假照片和视频,这给人们幸福的生活、社会的稳定带来了严重的隐患。为了遏制虚假不良信息传播,营造健康向上的网络环境,信息可信度评估就成了迫在眉睫的问题,社交媒体信息急需“鉴定师”和“测谎仪”。
社交媒体信息可信度评估研究既有较高的学术价值,也有较强的应用价值。具体来说,学术价值表现在研究社交媒体信息可信度评估并探讨虚假信息的生成机制、传播模式、治理措施,是对社交媒体环境下网络信息资源管理理论的丰富、发展与完善。应用价值表现在研究社交媒体信息可信度评估有助于社交媒体用户判断信息的可信性,营造诚信健康的互联网环境,也有助于提高社交媒体信息舆情监控、社交媒体信息引导、社交媒体搜索、社会化推荐等方面的效果。
2 社交媒体信息研究
社交媒体(Social Media)是通过Web2.0技术实现的一类支持用户自主创造和交换内容的媒体,如Twitter、Facebook、Youtube、LinkedIn、Wiki、微博、微信、QQ、论坛、人人网等。自1973年Lipkin、Szpakowski和Felsenstein 3人在美国加州伯克利市建立全球第一个公共电子公告牌系统 Community Memory后,BBS以及网络社区等早期的社交媒体开始映入人们的眼帘。《2015年全球社会化媒体、数字和移动业务数字统计趋势》报告表明:全球社交媒体活跃用户约占全球人口的29%。
2.1 国外研究
夜上海论坛 社交媒体的相关研究从20世纪80年代开始,在2005年左右开始进入快速发展阶段,发文量有逐年增加的趋势。在国际期刊中,发表社交媒体论文较多的要属《Computers in Human Behavior》。近两年,关于社交媒体的国际会议主要有ASONAM、SMP、MISNC、SMAP、SCSM。国外学者研究内容主要集中在以下4个方面:
夜上海论坛 2.1.1 社交媒体信息利用研究
社交媒体在商业领域、教育领域、公共管理领域等都有广泛的应用[1]。如在营销领域,利用社交媒体信息,可以获知消费者态度和行为[2],可以获知客户交流和推荐对营销的影响[3-4],可以获知社交媒体信息对营销管理功能的影响[5]。
2.1.2 社交媒体信息检索与信息推荐研究
夜上海论坛 侧重于社交媒体信息检索与信息推荐方法的研究。社交媒体信息的检索采用主题模型[6]、社会网络[7]、本体[8]等检索方法。比如,Hong和Davison(2010)使用标准主题模型进行社交媒体Twitter信息的检索。社交媒体信息的推荐采用内容推荐[9]、协同过滤[10]、时序推荐[11]、位置推荐[12]、社会化推荐[13]等方法。比如,Levandoski等(2012)提出位置感知推荐系统(LARS)[12]。
2.1.3 社交媒体信息传播研究
侧重于反映信息传播传播规律的社交媒体信息传播模型的构建以及通过模型的构建对实际问题进行预测等方面的研究。如Galuba等(2010)通过研究1 500万URL在不同Twitter用户之间的300小时传播,提出了基于内容流行度、用户影响力和传播速度的线性阈值模型[14]。Adar和Adamic(2005)通过研究信息在博客中传播的模式和动力学特性,提出用传染病模型来描绘信息传播的机理[15]。Asur和Huberman(2010)采用来自的聊天数据通过简单的线性回归模型预测电影票房的收入[16]。
夜上海论坛 2.1.4 社交媒体用户隐私研究
夜上海论坛 在探讨社交媒体用户隐私现存问题的基础上,提出了相应的隐私保护方法。如Viswanath等(2010)首先研究Sybil防御的缺陷,在其基础上探讨了替代Sybil防御的方法[17]。Conti等(2011)采用FaceVPSN解决社交媒体用户隐私问题[18]。
2.2 国内研究
国内学者的社交媒体研究最早可追溯至20世纪90年代末,但从2005年后起关于社交媒体的论文才逐渐表现出增长态势。国内研究内容主要集中在:
夜上海论坛 2.2.1 社交媒体信息传播研究
夜上海论坛 研究内容包括:①社交媒体信息传播模式研究。如韩佳等(2013)提出了基于改进SIR的在线社交网络信息传播模型[19]。姜景等(2015)构建表征谣言信息与辟谣信息传播机理的Lotka-Volterra竞争模型[20]。②社交媒体信息传播中存在的问题与对策研究。如阎俊(2015)探讨微博传播存在的问题及原因,并提出了加强微博内容管理、增强把关意识、提高微博用户的媒介素养等对策[21]。③社交媒体信息传播效果研究。如陈远和袁艳红(2012)以新浪微博作为数据来源,把信息覆盖人数、评论数、转发数作为微博信息传播效果的量化指标,从纵横向两个角度研究新浪微博信息传播过程造成的效应[22]。
2.2.2 社交媒体舆情分析与监测研究
夜上海论坛 如张J等(2014)以打砸日系车系列突发公共事件为实例,探讨其在新浪微博和新浪新闻平台上舆情传播的特征与规律[23]。张瑜等(2015)对新浪微博热门话题“北京单双号限行常态化”下的微博进行了数据采集,将舆情演化划分为潜伏、成长、爆发、衰退、波动、死亡6个阶段,并对各阶段进行情感分析,为舆情治理提供了支持[24]。唐涛(2014)在分析网络舆情五要素的基础上,探讨移动互联网舆情的新特征,指出面临的新挑战,并从信息分析、信息筛选、信息引导等方面提出对策[25]。
夜上海论坛 2.2.3 社交媒体营销研究
如唐兴通(2012)的著作《社会化媒体营销大趋势:策略与方法》系统总结了社交媒体营销,并对众多社交媒体工具在实际工作中的应用提供了具体的建议[26]。张淼(2014)提出了企业完善社交媒体营销策略的“9+3”模式[27]。刘晓燕和郑维雄(2015)采用社会网络分析方法研究企业微博营销传播的效果[28]。
3 信息可信度研究
3.1 国外研究
夜上海论坛 信息可信度(Information Credibility)是指人们对信息可相信程度的认识。它由值得信赖(Trustworthiness)和专业性(Expertise)两个关键要素组成[29]。信息可信度比较系统的研究始于20世纪50年代的传播领域。Hovland和同事的工作具有里程碑的意义[30]。信息可信度最初关注的是传播者的可信度。国外对传统媒体信息可信度的研究主要是从信源可信度、内容可信度、渠道可信度三方面展开的。随着互联网的出现,网络信息可信度的评估被提上了议事日程。研究情况可归纳如下:
3.1.1 网络信息可信度评估的理论模型
主要有Fogg(2003)的P-I理论模型、Wathen和Burkell(2002)的评判模型、Sundar(2008)的MAIN Model、Hilligoss和Rieh(2008)的统一模型、Metzger(2007)的双处理模型以及Lucassen等(2013)的3S模型(修订版)。以上理论模型是由情境、用户特征、操作性、处理过程这些侧面的若干部分构建而成的。
夜上海论坛 3.1.2 网络信息可信度研究内容
夜上海论坛 主要有对网络新闻的可信度研究、对搜索引擎结果的可信度研究以及对维基百科内容的可信度研究。比如,Nagura等(2006)通过比较关于同一主题不同网页的相似度来计算每个网页的可信度[31]。Yamamoto和Tanaka(2011)利用用户可信度评判模型对网页搜索结果进行重新排序,以便从Web搜索结果的列表中用户可以更高效的找到可信的网页[32]。Adler等(2008)以文章长度、版本数量和基于贡献数量的作者声誉建立模型,计算出维基百科文章的可信度[33]。
3.1.3 网络信息可信度研究方法
夜上海论坛 主要采用定量研究法。比如,Olteanu等(2013)在调查网页的各种特征(文本内容、链接结构、网页设计等)的基础上,经过统计分析方法筛选出关键的特征,采用监督学习算法来推断网页内容的可信度[34]。与网络信息可信度有关的典型系统有日本的WISDOM和Honto?Search。
夜上海论坛 3.1.4 影响力较大的项目和国际会议
夜上海论坛 影响力较大的项目有互联网可信度研究(The Web Credibility Research)项目,影响力较大的国际会议有WICOW(Workshop on Information Credibility on the Web)。
3.2 国内研究
夜上海论坛 1993年的《鉴别虚假信息五法》是国内发表的早期论文。2004年至今,相关研究进入快速发展期。相对于国外较多研究评估算法和评估系统,国内研究重点在于定性分析上,大多采用问卷调查及专家访谈法等进行人工评估。国内研究内容主要有:
夜上海论坛 3.2.1 侧重于信息可信度影响因素研究
夜上海论坛 比如,龚思兰等(2013)针对评论信息的文本内容、长度、情感倾向、时效性、者、商家活动等特征,通过问卷调查方式对大学生消费群体进行在线商品评论信息可信度影响因素实证分析[35]。蒋洪梅(2013)运用理论分析辅以实证研究的方法,从宏观的社会系统、中观的政策法规、微观的媒介与受众3个视角分析网络新闻信息可信度的影响因素[36]。
3.2.2 侧重于信息可信度指标体系的构建
比如,胡红亮(2013)按照信息源、信息加工、信息传播和信息应用等方面采用德尔菲专家调查法建立了学术著作可信度的基本评价模型[37]。潘勇和孔栋(2007)基于第三方认证机构的视角,构建了电子商务网站的信用评价指标体系及评价因素集,并建立灰色关联信用评估模型[38]。当然,也有少量基于机器学习的信息可信度自动化评估实验研究,比如,马伟瑜(2011)提出一种采用改进的PageRank算法评估网页信息可信度的方法[39]。
夜上海论坛 4 社交媒体信息可信度评估研究
4.1 国外研究
国外相关研究较早。社交媒体信息可信度的相关研究随着BBS的出现随之展开,最早可追溯到20世纪80年代。目前可以说,研究处于繁荣期。国外研究情况可归纳如下:
4.1.1 社交媒体信息可信度评估研究内容
研究内容主要包括:①不实信息的判断识别。如Qazvinian等(2011)提取Twitter信息的文本特征、网络特征和微博元素特征,构建贝叶斯分类器甄别谣言[40]。Zhao等(2015)通过研究查询帖以便及早识别社交媒体谣言[41]。②话题新闻的可信度评估。如Castillo等(2011)选取了有关用户特征、文本特征、主题特征、信息传播特征,采用J48决策树评估Twitter中话题新闻的可信度[42]。
夜上海论坛 4.1.2 社交媒体信息可信度评估方法
评估方法主要有监督学习[43],统计分析[44],与可信信息来源的相似性比较[45-46],社交网络的链接结构分析与主题模型的利用[47]等。它们主要采用自动评估,具体来说:①选取的特征:选取的特征主要是用户特征、文本特征、信息传播特征。比如,西班牙的Castillo和智利的Mendoza、Poblete(2011)选取用户特征(如注册时间、粉丝量、好友量),文本特征(如是否包含#标签、是否包含问号、Tweet中包含的URL数量、是否转发),主题特征(如带#标签Tweet的比例、Tweet数量、Tweet的平均长度、Tweet的平均情感分值、积极情绪或消极情绪的比例),以及信息传播特征(如传播树的深度),采用J48决策树评估Twitter信息的可信度[42]。②评估的方法:大多通过构建SVM分类器、Bayesian分类器、Decision Tree分类器等方法,并对结果进行分类,以达到评估社交媒体信息可信度的目的。上例Castillo等采用J48决策树构建分类器,并对结果进行分类,从而评估Twitter信息的可信度[42]。当然,也有通过对结果进行排序的实例,从而达到评估社交媒体信息可信度的目的。比如,Gupta和Kumaraguru(2012)采用Rank-SVM与PRF相结合的方法,按照可信度得分对Twitter信息进行排序[43]。
4.1.3 有较大影响的在研项目与系统
由欧盟资助七国科研人员联合攻关的PHEME项目研究的重点是社交媒体信息的真实性,该项目在国际上有较大影响。Jacob Ratkiewicz等(2011)开发出可实时追踪Twitter上政治谣言的Truthy系统[48]。Gupta等(2014)、Lorek等(2015)分别开发出一款可自动评估推文可信度的工具TweetCred、TwitterBOT[49-50]。
4.2 国内研究
2007年《博客信息“可信度不亚于纽约时报”?》拉开了国内探讨社交媒体信息可信度评估的序幕。目前研究还处于发展的初期。社交媒体信息可信度评估研究主要有:
4.2.1 社交媒体信息可信度影响因素研究
夜上海论坛 如刘雪艳和闫强(2013)探讨政府微博中的热点事件信息可信度的影响因素[51]。丁科芝(2015)从信息传播者、渠道、信息内容和用户基本信任观念4个方面构建社交网络可信度影响因素模型[52]。薛传业等(2015)从信息来源可信度、信息传播渠道可信度、信息内容可信度以及信息评论反馈多维度探讨了突发事件中社交媒体信息可信度的影响因素[53]。
夜上海论坛 4.2.2 构建社交媒体信息可信度指标体系研究
夜上海论坛 它大多采用问卷调查及专家访谈法进行人工评估。屈文建和谢冬(2013)从站点层次、版块层次、主题层次、内容层次4方面,采用模糊综合信用评估模型对网络学术论坛信息可信度进行评估[54]。莫祖英等(2013)从微博信息量、信息内容质量、信息来源质量和信息利用情况等方面进行问卷调查,采用层次分析法构建微博信息质量评估模型[55]。当然国内也有少量自动化评估的例子。比如,贺刚等(2013)引入关键词分布特征和时间差等新特征,基于SVM算法来预测新浪微博信息是否为谣言[56]。程亮等(2013)提出基于BP神经网络模型及改进其激发函数,同时引入冲量项,对微博话题在传播过程中演变为谣言进行检测[57]。路同强(2015)采用半监督学习算法检测微博谣言,但不足之处在于未考虑信息的深层特征[58]。
4.3 存在的问题
对比国内外研究情况,可发现国内研究存在如下问题:
夜上海论坛 4.3.1 研究内容
关于社交媒体信息可信度研究,国内外目前以微博研究较多。与国外丰富的研究内容相比,国内在该领域的研究还主要集中于对影响因素以及特征的探讨上。
4.3.2 研究方法
夜上海论坛 国外定量研究较多,很多涉及自动化评估,而国内定性研究较多,大多采用问卷调查法、专家访谈法等进行人工评估。
总之,现有研究大多是针对Twitter等英文社交媒体,其研究成果大多不能直接应用于中文社交媒体。尽管也有少量研究是面向中文社交媒体的,但研究成果零散,还缺乏系统性。另外,在特征选择上,选择范围面较窄,考虑社交媒体深层的隐含特征较少。
5 结 语
夜上海论坛 为了解决中文社交媒体的可信度评估问题,在吸收前人研究的基础上[59-63],很有必要对中文社交媒体信息可信度进行系统研究,特别是在参考国外信息可信度评估系统的基础上,很有必要研制开发中文社交媒体信息可信度评估系统,实现中文社交媒体信息可信度的自动评估。在进行中文社交媒体信息可信度评估中,应注意下列问题:
1)评估要在对信息资源分类的基础上,对不同的类别采用不同的评估指标体系,以提高评估工作的科学性和合理性。
夜上海论坛 2)评估既要重视定性评估,也要重视定量评估,尤其是自动化评估。特别是在大数据环境下,应针对评估的实际需求,制定科学的评估方案,选择恰当的评估方法,构建适合评估工作需要的自动化评估系统。
3)评估指标、评估模型的选取以及参数的训练,既要考虑研究结果的精确度,又要考虑系统的运算时间。
4)评估模型构建后,不仅要进行实验室评估,还应进行实际效果评估。
参考文献
[1]Ngai,E.W.T.,Moon,K.K.,Lam,S.S.,Chin,E.S.K.and Tao,S.S.C..Social media models,technologies,and applications[J].Industrial Management and Data Systems,2015,115(5):769-802.
[2]Gamboa,A.M.and Gonalves,H.M..Customer loyalty through social networks:lessons from Zara on Facebook[J].Business Horizons,2014,57(6):709-717.
[3]Jin,S-A.A.and Phua,J.Following celebrities tweets about brands:the impact of Twitter-based electronic word-of-mouth on consumers source credibility perception,buying intention,and social identification with celebrities[J].Journal of Advertising,2014,43(2):181-195.
夜上海论坛 [4]Colliander,J.and Dahlén,M.Following the fashionable friend:the power of social media[J].Journal of Advertising Research,2011,51(1):313-320.
夜上海论坛 [5]Moncrief,W.C.,Marshall,G.W.and Rudd,J.M..Social media and related technology:drivers of change in managing the contemporary sales force[J].Business Horizons,2015,58(1):45-55.
夜上海论坛 [6]Hong,Liangjie and Davison,B.D..Empirical study of topic modeling in twitter[C]∥Proceedings of the First Workshop on Social Media Analytics(SOMA10).ACM,New York,NY,USA,2010:80-88.
[7]Kleinberg,J.M..Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,46(5):604-632.
夜上海论坛 [8]Tobar,C.M.,Germer,A.S.,Adan-Coello,J.M.,and De Freitas,R.L..Information retrieval in Wikis using an ontology[J].Computational Science and Engineering,2009:826-831.
夜上海论坛 [9]Kim,Y.and Shim,K.TWILITE:A recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation[J].Information Systems,2014:59-77.
[10]Ramesh,A.,Anusha J.,Clarence,J.M.T..A novel,generalized recommender system for social media using the collaborative-filtering technique[J].ACM SIGSOFT Software Engineering Notes,2014:1-4.
[11]Zimdars,A.,Chickering,D.M.,and Meek,C.Using Temporal Data for Making Recommendations[C]∥Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence(UAI01),Jack Breese and Daphne Koller(Eds.).Morgan Kaufmann Publishers Inc.,San Francisco,CA,USA,2001:580-588.
[12]Levandoski,J.J.,Sarwat,M.,Eldawy,A.and Mokbel,M.F..LARS:A Location-Aware Recommender System[C]∥IEEE 28th International Conference on Data Engineering,Washington,DC,2012:450-461.
夜上海论坛 [13]Jamali,M.and Ester,M.Trust Walker:a random walk model for combining trust-based and item-based recommendation[C]∥Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining(KDD09).ACM,New York,NY,USA,2009:397-406.
[14]Galuba W,Aberer K,Chakraborty D,Despotovic Z,Kellerer W.Outtweeting the twitterers-predicting information cascades in microblogs[C]∥Proceedings of the 3rd Workshop on Online Social Networks,USENIX Association,Boston,MA,USA,2010:1-9.
[15]Adar,E.and Adamic,L.A..Tracking Information Epidemics in Blogspace[C]∥Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence(WI05).IEEE Computer Society,Washington,DC,USA,2005:207-214.
夜上海论坛 [16]Asur,S and Huberman,B.A..Predicting the Future with Social Media[C]∥2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology(WI-IAT),Toronto,2010:492-499.
[17]Viswanath,B.,Post,A.,Gummadi,K.P.,and Mislove,A.An analysis of social network-based Sybil defenses[J].Acm Sigcomm Computer Communication Review,2010,40(4):363-374.
[18]Conti,M.,Hasani,A.,and Crispo,B.Virtual Private Social Networks[C]∥Proceedings of the 1st ACM Conference on Data and Application Security and Privacy(ACM SIGSAC CODASPY 2011),San Antonio,TX,USA,2011:39-50.
[19]韩佳,肖如良,胡耀,等.在线社交网络中信息传播模式的特征分析[J].计算机应用,2013,(1):105-107,111.
夜上海论坛 [20]姜景,李丁,刘怡君.基于竞争模型的微博谣言信息与辟谣信息传播机理研究[J].数学的实践与认识,2015,(1):182-191.
[21]阎俊.微博传播的问题与对策研究[D].锦州:渤海大学,2015:1-38.
[22]陈远,袁艳红.微博信息传播效果实证研究[J].信息资源管理学报,2012,(3):28-34.
[23]张,孙霄凌,朱庆华.突发公共事件舆情传播特征与规律研究――以新浪微博和新浪新闻平台为例[J].情报杂志,2014,(4):90-95.
[24]张瑜,李兵,刘晨.面向主题的微博热门话题舆情监测研究――以“北京单双号限行常态化”舆情分析为例[J].中文信息学报,2015,(5):143-151,159.
[25]唐涛.移动互联网舆情新特征、新挑战与对策[J].情报杂志,2014,(3):113-117.
[26]唐兴通.社会化媒体营销大趋势:策略与方法(第2版)[M].北京:清华大学出版社,2012:1-235.
夜上海论坛 [27]张淼.社会化媒体在市场营销中的应用研究[D].北京:首都经济贸易大学,2014:1-47.
夜上海论坛 [28]刘晓燕,郑维雄.企业社会化媒体营销传播的效果分析――以微博扩散网络为例[J].新闻与传播研究,2015,(2):89-102,128.
夜上海论坛 [29]Fogg,B.J.,and Tseng,H.The elements of computer credibility[C]∥Proceedings of the SIGCHI conference on Human Factors in Computing Systems,Pittsburgh,Pennsylvania,USA,1999:80-87.
[30]Rieh,S and Danielson,D.Credibility:A Multidisciplinary Framework[J].Annual Review of Information Science and Technology,2007:307-364.
[31]Nagura,R.,Seki,Y.,Kando,N and Aono,M.A method of rating the credibility of news documents on the web[C]∥Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval(SIGIR06).ACM,New York,NY,USA,2006:683-684.
[48]Ratkiewicz,J.,Conover,M.,Meiss,M.,Gonalves,B.,Patil,S.,Flammini,A.and Menczer,F.Truthy:mapping the spread of astroturf in microblog streams[C]∥Proceedings of the 20th international conference companion on World wide web(WWW11).ACM,New York,NY,USA,2011:249-252.
夜上海论坛 [49]Gupta,A.,Kumaraguru,P.,Castillo,C.,and Meier,P.TweetCred:Real-Time Credibility Assessment of Content on Twitter[C]∥Social Informatics.Springer International Publishing,2014:228-243.
夜上海论坛 [50]Krzysztof,L.,Jacek,S.W.,Michal,J.L.,and Amit,G.Automated Credibility Assessment on Twitter[J].Computer Science,2015,(2):157-168.
[51]刘雪艳,闫强.政府微博中的热点事件信息可信度研究[J].北京邮电大学学报:社会科学版,2013,(2):6-12.
[52]丁科芝.社交网络信息可信度研究[D].武汉:华中师范大学,2015:1-61.
夜上海论坛 [53]薛传业,夏志杰,张志花,等.突发事件中社交媒体信息可信度研究[J].现代情报,2015,(4):12-16.
夜上海论坛 [54]屈文建,谢冬.网络学术论坛信息可信度的灰度分析[J].图书情报知识,2013,(2):112-118.
[55]莫祖英,马费成,罗毅.微博信息质量评价模型构建研究[J].信息资源管理学报,2013,(2):12-18.
夜上海论坛 [56]贺刚,吕学强,李卓,等.微博谣言识别研究[J].图书情报工作,2013,(23):114-120.
[57]程亮,邱云飞,孙鲁.微博谣言检测方法研究[J].计算机应用与软件,2013,(2):226-228,262.
夜上海论坛 [58]路同强,石冰,闫中敏,等.一种用于微博谣言检测的半监督学习算法[J].计算机应用研究,2016,(3):744-748.
[59]Ginsca,A.L.,Popescu,A.,and Lupu,M.Credibility in Information Retrieval[J].Foundations and Trends in Information Retrieval,2015:355-475.
夜上海论坛 [60]Lazar,J.Meiselwitz,G.and Feng,J.Understanding Web Credibility:A Synthesis of the Research Literature[M].Now Publishers Inc,2007:1-80.
夜上海论坛 [61]Zafarani,R.Abbasi,M.A.,and Liu,H.社会媒体挖掘[M].北京:人民邮电出版社,2015:1-240.