夜上海论坛 精品范文 生物塑料研究范文

生物塑料研究范文

前言:我们精心挑选了数篇优质生物塑料研究文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

生物塑料研究

第1篇

夜上海论坛 地膜覆盖栽培技术的使用与大力推广为农业增产做出了巨大贡献,但在粮食和经济作物产量增加的同时,土壤中大量难以降解的塑料地膜残余物逐年上升,造成了环境污染,影响了生态平衡。大多农民使用的地膜厚度薄、强度差、易老化、难回收,非常容易残留在地里,导致“白色污染”。每年有几百万吨的地膜被弃于土壤中,是一个不可忽视的污染源。据调查,连续35年覆膜的土地,其中的废弃地膜可使小麦减产5%9%,蔬菜减产2%10%,玉米产量下降10%,棉花产量下降10%23%。此外,牛羊误食残膜碎片,可导致肠胃功能失调,严重时造成死亡。

调查结果引起了我们的震惊和思索:能不能找到合适的方法加速降解农田土壤中日益增多的残留农膜呢?我们学校的科技辅导员帮我们查阅了资料,并介绍了从事微生物研究的科研机构和辅导老师,确定了项目的可行性。于是,我们开始了关于农膜降解的研究。

研究过程

技术路线

夜上海论坛 研究技术路线见图1。

菌源样品

5份菌源样品分别采自生活小区垃圾堆、保定市垃圾处理厂、保定市纺织厂排水沟、保定市区河流底泥及郊区农田土壤。用采样铲采集垃圾、污泥及农田地表土壤以下1015cm深处土样各约100g于牛皮纸袋中,记录采样时间、地点等信息并标号,风干、过40目筛,4℃冰箱放置备用,采样时间为2010年7月,要求所有样品在3周内处理完毕。

实验方法

高效PVA(聚乙烯醇)降解菌株的分离筛选。实验共采集了保定市郊垃圾处理厂、纺织厂排水沟土壤、河流底泥等5个土壤样品,每个样品筛选3批,共进行了15批次的驯化与分离。

菌株的种属鉴定。根据《常见细菌系统鉴定手册》,分为形态观察、生理生化实验和16SrDNA序列分析3方面进行。

高效PVA降解菌株培养条件优化(产芽孢工艺研究)。内容包括斜面菌种活化、种子制备、液体培养等。

夜上海论坛 菌株对PVA的降解效果研究,包括菌株芽孢液制备、摇瓶中的降解实验、土壤模拟降解实验等。

实验结果与分析 土样中PVA降解细菌的分离筛选

为了提高筛选效率,采用PVA平板透明圈初筛的方法,经初筛共得到8株呈现透明圈亦即具备降解PVA能力的菌株(见图2),分别为1-16、1-21、2-1、2-2、3-3、3-4、3-9和4-2菌株。

对初筛所得8株菌株进行培养,然后测定各菌株对发酵液中的PVA降解率。结果显示,3-4菌株的降解率最高,48h后达到35.43%。

3-4菌株的种属鉴定

夜上海论坛 经基因组提取、扩增和序列测定,得到该菌株及相应标准菌株的进化距离并构建了系统发育树。将3-4菌株的形态及生理生化特征与《常见细菌系统鉴定手册》中相应属、种的有关性状相对照,发现3-4菌株形态及生理生化特征与解淀粉芽孢杆菌较为一致,因此鉴定菌株3-4为解淀粉芽孢杆菌(液化淀粉芽孢杆菌Bacillus amyloliquefaciens)。经科技查新,国内报道中尚未见过该菌株用于PVA降解的报道。

解淀粉芽孢杆菌3-4菌株的产芽孢条件优化

实验结果表明,PVA降解菌株的摇瓶培养产芽孢条件为:2%麸皮,0.5%玉米浆,0.05%KH2 PO4 ,0.3%ZnCl2 ,Na2 HPO4·12H2 O0.4%。最佳的发酵参数为pH8.0,种龄14h,装瓶量50mL/250mL三角瓶,30℃,200r/min。在此优化条件下,其芽孢产率可达95%以上,总生物量为2.69×109 CFU。

夜上海论坛 菌株的降解应用效果

摇瓶发酵降解实验。在摇瓶降解基础培养基中加入不同浓度的PVA及一定量菌株芽孢液,30℃、200r/min条件下摇床培养96h,不同时间测定残留量绘制降解率曲线见图3。结果表明,菌液对摇瓶中添加不同浓度的PVA均有降解效果,在浓度为10mg/mL时降解率最高,在96h时达到72.10%;浓度为25mg/mL时,96h降解率为53.59%;菌液对PVA塑料的降解率要低于对纯品PVA的降解,分析可能是由于PVA塑料除含有PVA外还有淀粉基体等其他物质,因此降解得相对缓慢。

模拟土壤降解实验。菌液对土壤中PVA纯品的降解实验结果见图4。由图可知,随着时间的延长,菌液对土壤中的PVA降解率呈增加趋势,在降解28天时,土壤中的大部分PVA可被降解。菌液对土壤中PVA塑料的降解实验结果表明,菌株的施入量对PVA塑料的降解速率有一定影响,菌液加入量越多降解就越快,达到一定值时降解速率的增加则不再明显。在菌剂加入为4mL时,28天可将PVA塑料降解63.25%。实验证实,从微生物方面讲,菌液不会引起不良生态效应;菌液对受试土壤理化指标无明显影响,表明该菌株具有良好的大规模应用前景。

研究创新点及推广前景

夜上海论坛 分离筛选出高效降解PVA的新菌株解淀粉芽孢杆菌3-4。经科技查新,该菌应用于PVA的微生物降解在国内文献尚未见报道。

夜上海论坛 首次进行了PVA降解菌株(解淀粉芽孢杆菌3-4菌株)的生产工艺研究。研究结果为利用微生物菌剂降解残留PVA农膜奠定了前期科学基础。经科技查新,目前国内未见PVA菌剂菌株生产工艺的研究及解淀粉芽孢杆菌产芽孢条件的研究。

夜上海论坛 探明了所研制菌液降解PVA及PVA塑料的适用条件和实际降解效果,为PVA环境污染的微生物修复奠定了科学基础。

夜上海论坛 本研究所获的PVA降解菌株降解效率高,菌液生产工艺完善、成本低廉,降解效果明确。此菌株及其菌液生产和实际降解工艺,在PVA农膜污染治理方面有较大的应用推广价值,在其他行业的含PV污染治理方面也具有广阔的应用前景。

下一步工作设想

夜上海论坛 所获得的供试菌株为自然界的野生菌株,应具备较大的产酶及降解活性的提高空间,因此可对其开展产酶特性研究,使其降解潜力得以充分发挥;还可考虑对其实施诱变、基因工程育种等手段,进一步提高其PVA降解能力。

夜上海论坛 应尽快以小白鼠为供试动物考察菌株安全性,确保菌株的使用安全,不会对环境产生新的危害。

可进一步研究菌剂的大生产工艺和固定化工艺等,为功能菌株的大规模应用奠定基础,并深入研究适合的工艺和设备,提高其降解效率和其实用性。

进一步考察此菌株在其他PVA污染治理中的应用潜力,如对纺织废水中PVA的降解。

夜上海论坛 该项目获得第27届全国青少年科技创新大赛创新成果竞赛项目中学组环境科学一等奖。

第2篇

关键词:生物降解性能;合成塑料;可生物降解塑料

中图分类号:TQ321.4;X384 文献标识码:A 文章编号:0439-8114(2013)11-2481-05

塑料是人工合成的长链高分子材料[1]。由于塑料具有优秀的理化性能,如强度、透明度和防水性等,合成塑料已广泛应用于食物、药物、化妆品、清洁剂和化学品等产品的包装。塑料已经成了人类生活中不可缺少的一部分,目前全世界大约有30%的塑料用于包装,而且仍以每年高达12%的比率扩展。

夜上海论坛 塑料材料在世界范围内的广泛使用,在给人类生产和生活带来巨大益处的同时也带来了很多问题:如石油资源的大量消耗和塑料垃圾的日益增加等,它们会给人类未来的生活带来难以估计的能源危机和环境污染问题。尤其是各种废弃塑料制品的处理问题,已经不单是简单的环境治理方面的问题,世界各国普遍已将其发展认识成为值得重视的政治问题和社会问题。由于塑料在自然进化中存在的时间较短,因此塑料可抵抗微生物的侵蚀,自然界中一般也没有能够降解塑料这种合成聚合物的酶[2]。目前塑料垃圾一般是通过填埋、焚化和回收处理掉。但不恰当的塑料废弃物处理往往是环境污染的重要来源,不仅直接危害人类的生存,而且潜在地威胁社会的可持续发展。比如聚氯乙烯(Polyvinyl chloride,PVC)塑料的燃烧会产生二恶英的持久性有机污染物[3]。

夜上海论坛 由于与传统塑料有相似的材料性质,又具有非常好的生物降解性能[4],以聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHAs)、聚乳酸(Polylactic acid,PLA)、 聚己内酯(Polycaprolactone,PCL)等为代表的可生物降解塑料已开始广泛应用于各种包装材料、医疗设备以及一次性卫生用品生产,另外在农田地膜生产中也已用作聚丙烯或聚乙烯的替代品[5]。可生物降解塑料的使用可降低石油资源消耗的30%~50%,进一步缓解对石油资源的使用;另外可生物降解塑料制品的废弃物可以进行堆肥处理,所以与普通石油来源的塑料垃圾相比可避免人工分拣的步骤,这样就大大方便了垃圾的收集和后续处理。因此,可生物降解塑料十分符合现在提倡的可持续发展的政策,以利于真正实现“源于自然,归于自然”。

1 塑料降解概述

夜上海论坛 任何聚合物中的物理和化学变化都是由光、热、湿度、化学条件或是生物活动等环境因素引起的。塑料的降解一般包括光降解、热降解以及生物降解等。

夜上海论坛 聚合物光降解的敏感性与其吸收来自对流层的太阳辐射的能力直接相关。在非生物降解中,光辐射活动是影响降解最重要的因素[6]。一般来说,UV-B辐射(295~315 nm)和UV-A辐射(315~400 nm)会直接造成光降解;而可见光(400~760 nm)是通过加热来实现加快聚合体降解的;红外光(760~2 500 nm)则是通过加快热氧化作用实现降解。大多数塑料倾向于吸收光谱中紫外部分的高能量辐射,激活电子更活跃的反应,导致氧化、裂解和其他的降解。

聚合物的热降解是由过热引起的分子降解。在高温下,聚合物分子链的迁移率和体积会发生改变,长链骨架组分断裂,发生相互作用从而改变聚合物特性[6]。热降解中的化学反应导致材料学和光学性能的改变。热降解通常包括聚合物相对分子质量变化和典型特性的改变;包括延展性的降低、脆化、粉末化、变色、裂解和其他材料学性能的降低。

生物降解是塑料降解的最主要途径,一般来说,塑料在自然状态下进行有氧生物降解,在沉积物和垃圾填埋池中进行厌氧降解,而在堆肥和土壤中进行兼性降解。有氧生物降解会产生二氧化碳和水,而无氧生物降解过程会产生二氧化碳、水和甲烷[7]。通常情况下,高分子聚合物分解成二氧化碳需要很多不同种类的微生物的配合作用,一些微生物可将其降解为相应的单体,另一些微生物能利用单体分泌更简单的化合物,还有一些微生物再进一步利用这些简单化合物以实现聚合物的完全降解[1]。

生物降解是受很多因素控制的,包括微生物类型和聚合物特性(迁移率、立构规整度、结晶度、相对分子质量、功能团类型以及取代基等),另外添加到聚合物中的增塑剂和添加剂等都在生物降解过程中起着重要作用[8]。降解过程中聚合物首先转化成单体,然后单体再进行矿化。大多数聚合物都难以通过细胞膜,所以在被吸收和生物降解进入细胞前必须先解聚成更小的单体或寡聚体[9]。微生物降解起始于各种各样的物理和生物推动力。物理动力(如加热/冷却、冷冻/熔化以及湿润/干燥)会引起聚合物材料裂化的机械破坏;微生物进一步渗透,造成小规模溶胀和爆破。至少有两种酶在聚合物降解中起着重要作用,它们分别是胞内解聚酶和胞外解聚酶。胞外解聚酶将聚合物分解成短链分子,短链分子小到足以透过细胞膜,被胞内解聚酶进一步分解。

夜上海论坛 2 天然可生物降解塑料的生物降解

天然可生物降解塑料一般是指以有机物为碳源,通过微生物发酵而得到的生物降解塑料。主要以PHAs较多,其中最常见的有聚3-羟基丁酸酯[Poly(3-hydroxybutyrate),PHB]、聚羟基戊酸酯[Poly(3-hydroxyvalerate),PHV]和其共聚物[Poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV][10]。微生物在营养缺乏的情况下产生并储存PHAs,当营养不受限时微生物会将其降解并代谢[11]。但是微生物储存PHAs的能力未必能保证环境中微生物对PHAs的降解能力。微生物必须先分泌胞外水解酶,将聚合物转化成相应的羟基酸单体[7]。PHB水解产物为3-羟基丁酸,而PHBV的胞外降解产物为3-羟基丁酸和3-羟基戊酸[12]。这些单体都是水溶性的,可透过细胞壁,在有氧情况下进行β-氧化和三羧酸循环,完全氧化为二氧化碳和水,厌氧情况下还会生成甲烷。实际上,在所有高等动物血清中都发现了3-羟基丁酸,因此PHAs可用于医学方面,包括用于长期控制药物释放、手术针、手术缝合线、骨头和血管替代品等。

目前已在多种环境中分离出大量可以降解PHAs的微生物[13,14]。在土壤中发现的Acidovorax faecilis、Aspergillus fumigatus、 Comamonas sp.、 Pseudomonas lemoignei和Variovorax paradoxus,在活性污泥中分离出的Alcaligenes faecalis和Pseudomonas sp.,在海水中发现的Comamonas testosteroni,存在于厌氧污泥中的Ilyobacter delafieldii以及在湖水中发现的Pseudomonas stutzeri对PHAs均具有降解能力。

夜上海论坛 PHB胞外解聚酶是微生物自身分泌的,对于环境中PHB的新陈代谢发挥着重要作用。很多PHB解聚酶已从Alcaligenes[15]、Comamonas[16]和Pseudomonas[17]的微生物中分离纯化出来。对它们的基本结构分析表明,这些酶由底物结合区、催化区和连接二者的联合区域构成。底物结合区域在结合PHB方面发挥着重要作用。催化部分包含一个催化单元,由催化三联体(Ser-His-Asp)构成。目前对于PHB解聚酶的性能研究已比较深入,研究显示,PHB解聚酶相对分子质量一般低于100 000,大多数PHA解聚酶相对分子质量都在40 000~50 000;最适pH为7.5~9.8,只有来源于Pseudomonas picketti和Penicillium funiculosum的解聚酶的最适pH是5.5和7.0;在较宽的pH、温度、离子强度等范围内稳定;大多数PHA解聚酶都会受到丝氨酸酯酶抑制剂的抑制[18]。

夜上海论坛 3 聚合物共混材料的生物降解

聚合物共混材料是由可降解塑料和通用塑料混合制成的,其降解率取决于其中较易降解的成分,降解过程破坏聚合物的结构完整性,增加了表面积,剩余聚合物暴露出来,微生物分泌的降解酶也会增强。目前常见的聚合物共混材料主要是以淀粉基为主要可降解部分的共混材料。

夜上海论坛 3.1 淀粉/聚乙烯共混物的生物降解

夜上海论坛 聚乙烯是一种对微生物侵蚀有很强抵御能力的惰性聚合物[19]。随着相对分子质量的增加,生物降解也会减弱[20]。将容易生物降解的化合物如淀粉添加到低密度的聚乙烯基质中,可加强碳-碳骨架的降解。与纯淀粉相比,淀粉聚乙烯共混物的碳转移率降低,在有氧的情况下转移率较高。Chandra等[21]研究发现在Aspergillus niger、Penicillium funiculom、Chaetomium globosum、 Gliocladium virens和Pullularia pullulans混合真菌接种的土壤环境中,线性低密度聚乙烯淀粉共混物可有效地被生物降解。添加淀粉的聚乙烯的降解率取决于淀粉含量,而且对环境条件和共混物中的其他成分很敏感[22]。很多研究者在研究时发现,在淀粉/低密度聚乙烯共混物中添加改性淀粉后,改性淀粉可增强其在共混物中的可混合性和黏着力[23]。但是与未改性的淀粉/聚乙烯共混物相比,这种改性淀粉的生物降解率较低。

夜上海论坛 3.2 淀粉/聚酯共混物的生物降解

淀粉和PCL共混物被认为是可完全降解的,这是因为共混物中的每种成分都是可生物降解的[24],Nishioka等[25]已在活性污泥、土壤和堆肥中研究了不同等级商用聚酯Bionoll的生物降解能力。PHB解聚酶和脂酶均可以打开PHB的酯键,由于其结构的相似性,这些酶还能降解Bionolle。Bionolle和低成本淀粉的混合物的开发研究可进一步提高成本竞争力,同时在可接受的程度上维持其他性能。有研究表明,淀粉的添加大大提高了Bionolle组分的降解率[26]。

夜上海论坛 3.3 淀粉/水溶性聚合物聚乙烯醇共混物的生物降解

水溶性聚合物聚乙烯醇(Polyvinyl alcohol,PVA)与淀粉有更好的兼容性,而且这种共混物拥有良好的薄膜性能。很多这样的共混物已得到发展并用来制作可生物降解包装设备[27]。PVA和淀粉共混物也被认为是可生物降解的,因为这两种成分在多种生物环境下都是可生物降解的。从城市污水厂和垃圾堆埋区的活性污泥中分离出的细菌和真菌对淀粉、PVA、甘油和尿素共混物的生物降解能力数据表明,微生物可消耗淀粉、PVA的非结晶区、甘油和尿素增塑剂[27],而PVA的结晶区未受降解影响。

3.4 脂肪族-芳香族共聚酯的生物降解

脂肪族-芳香族(Aliphatic-aromatic,AAC)共聚酯结合了脂肪族聚酯的生物可降解性和芳香族聚酯的高强度性能。为了降低AAC的成本经常混加淀粉。与其他可生物降解塑料相比,AAC和低密度聚乙烯有更相似的特性,特别是吹膜挤出。AAC也符合食品保鲜膜的所有功能要求,如透明度、弹性和防雾特性,所以这种材料很适合用于水果和蔬菜的食品包装。虽然AAC以化石燃料为基础,但是它是可生物降解和堆肥降解的。通常情况下,它在微生物环境中12周就会被降解得肉眼不可见。

4 合成塑料的生物降解

4.1 聚乳酸聚酯的生物降解

夜上海论坛 聚乳酸(Polylactic acid,PLA)是一种线性脂肪族聚酯,它是由天然乳酸缩聚或是丙交酯的催化开环制得的。PLA中的酯键对化学水解作用和酶催化断键都很敏感。PLA的应用是其热压产品,如水杯、外卖食物餐盒、集装箱和花盆盒。PLA在60 ℃或是高于60℃大规模的堆肥操作中可以完全降解。PLA的降解首先是水解成水溶性化合物和乳酸。这些产物被多种微生物快速代谢成CO2和水。Torres等[28]研究了Fusarium moniliforme、Penicillium roquefort 对PLA低聚物(相对分子质量为1 000)的降解;Pranamuda等[29]报道了Amycolatopsis sp.对PLA的降解,而在Tomita等[30]的研究中也报道了Bacillus brevis对PLA具有降解能力。另外,已证明可使用专性酯酶如Rhizopus delemer脂肪酶降解小分子PLA(相对分子质量为2 000)。

4.2 聚琥珀酸丁二酯的生物降解

聚琥珀酸丁二酯(Polybutylene succinate,PBS)具有优良的机械性能,通过传统的熔融技术可用于一系列终端产品。这些应用包括地膜、包装膜、塑料袋和易冲刷卫生产品。PBS是水合式生物降解的,通过水解机制开始生物降解。在酯键处发生水解,相对分子质量降低,使得微生物可进行进一步降解。

4.3 改性的聚对苯二甲酸乙二酯的生物降解

改性的聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)是在PET中添加乙醚、酰胺或是脂肪族单体共聚单体,由于它们的键能较弱而更容易通过水解作用进行生物降解。这一降解机制包括酯键的水解与醚和酰胺键的酶促作用。改性PET可通过改变所使用的共聚单体调节和控制降解率。

夜上海论坛 5 聚氨酯的生物降解

聚氨酯(Polyurethane, PUR)是具有分子内氨基甲酸酯键(碳酸酯键-NHCOO-) 的聚异腈酸酯和多元醇的缩合产物。据报道,PUR中的氨基甲酸酯键易受到微生物的进攻。PUR的酯键水解作用被认为是PUR的生物降解机制。已发现土壤中的4种真菌Curvularia senegalensis、 Fusarium solani、Aureobasidium pullulans和Cladosporium sp.可降解聚氨酯。Kay等[31]分离并研究了16种不同细菌降解PUR的能力。Shah[32]报道称在埋于土壤中6个月的聚氨酯薄膜中分离出了5种细菌,它们分别被定义为Bacillus sp. AF8、 Pseudomonas sp. AF9、 Micrococcus sp. AF10、 Arthrobacter sp. AF11和Corynebacterium sp. AF12。

夜上海论坛 FTIR光谱可用来证明聚氨酯生物降解机制是聚氨酯中酯键的水解作用。聚氨酯生物降解能力取决于酯键的水解作用[33]。酯键降低的比率大约超过醚键50%,这与测量到的聚氨酯降解的数量相吻合。FTIR分析埋于土壤中6个月经真菌作用后的PUR薄膜[34],显示2 963 cm-1(对照)至2 957 cm-1(试验)波峰有轻微下降,这表明在1 400~1 600 cm-1处C-H键的断裂和C=C的形成。FTIR分析Corynebacterium sp.降解聚氨酯的分解产物表明聚合物的酯键是微生物酯酶进攻的主要地方[31]。目前已分离并表征了两种PU酶,它们分别是与细胞膜结合的PU酯酶和胞外PU酯酶[35]。这两种酶在聚氨酯的生物降解中发挥着不同的作用。与膜结合的PU酯酶可提供细胞介导接近聚氨酯的疏水表面,然后胞外PU酯酶吸附在聚氨酯表面。在这些酶的作用下,细菌可以吸附在聚氨酯的表面并将PU基质水解代谢掉。

6 结论

传统石油来源的通用塑料的过度使用已使得其成为当今世界环境污染的罪魁祸首,因此可生物降解塑料取代通用塑料已经成为未来材料科学领域发展的必然趋势。这些可生物降解塑料的优势主要体现在其可生物降解性和可再生性,此外还具有许多优良的理化性能,如热塑性、生物相容性、产物安全性、成膜后具有高透明度、纤维的高拉伸强度以及易于加工等。但是应该看到的是相关可生物降解塑料在自然界中降解往往十分缓慢,而且在PLA经改性或制成产品后,其在环境中的降解就更为缓慢,因此在进行可生物降解塑料合成和改性研究的同时,其生物降解研究也应该受到重视,以实现其废弃物快速完全降解,并建立有效的生物循环系统以实现产品物料循环。

参考文献:

[1] EUBELER J P, BERNHARD M, ZOK S, et al. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures [J]. TrAC Trends in Analytical Chemistry,2009,28(9):1057-1072.

夜上海论坛 [2] MUELLER R J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling [J]. Process Biochemistry, 2006,41(10):2124-2128.

[3] JAYASEKARA R,HARDING I,BOWATER I, et al. Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation[J]. Journal of Polymers and the Environment,2005,13(2):231-251.

[4] 陈国强,罗荣聪,徐 军,等. 聚羟基脂肪酸酯生态产业链——生产与应用技术指南[M].北京:化学工业出版社,2008.25-37.

夜上海论坛 [5] OJUMU T V, YU J, SOLOMON B O. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer[J]. African Journal of Biotechnology,2004,3(1):18-24.

[6] LUCAS N,BIENAIME C,BELLOY C,et al. Polymer biodegradation: Mechanisms and estimation techniques [J]. Chemosphere,2008,73(4):429-442.

[7] VOLOVA T G,BOYANDIN A N,VASILIEV A D,et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria [J]. Polymer Degradation and Stability,2010,95(12):2350-2359.

夜上海论坛 [8] ARTHAM T, DOBLE M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience,2008,8(1):14-24.

[9] TRAINER M A, CHARLES T C. The role of PHB metabolism in the symbiosis of rhizobia with legumes [J]. Applied Microbiology and Biotechnology,2006,71(4):377-386.

[10] SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: A comprehensive review[J]. Biotechnology Advances,2008,26(3):246-265.

夜上海论坛 [11] PAPANEOPHYTOU C P, VELALI E E, PANTAZAKI A A. Purification and characterization of an extracellular medium-chain length polyhydroxyalkanoate depolymerase from Thermus thermophilus HB8[J]. Polymer Degradation and Stability,2011, 96(4):670-678.

[12] GARC?魱A D E,MAR?魱A C, HUESO DOM?魱NGUEZ K B. Simultaneous kinetic determination of 3-hydroxybutyrate and 3-hydroxyvalerate in biopolymer degradation processes[J]. Talanta,2010,80(3):1436-1440.

夜上海论坛 [13] ZHOU H, WANG Z, CHEN S, et al. Purification and characterization of extracellular poly(β-hydroxybutyrate) depolymerase from Penicillium sp. DS9701-D2[J]. Polymer-Plastics Technology and Engineering,2009,48(1):58-63.

[14] CALABIA B P, TOKIWA Y. A novel PHB depolymerase from a thermophilic Streptomyces sp.[J]. Biotechnology Letters,2006,28(6):383-388.

[15] BACHMANN B M, SEEBACH D. Investigation of the enzymatic cleavage of diastereomeric oligo (3-hydroxybutanoates) containing two to eight HB units. A model for the stereoselectivity of PHB depolymerase from Alcaligenes faecalis T1[J]. Macromolecules,1999,32(6):1777-1784.

夜上海论坛 [16] KASUYA K, DOI Y, YAO T. Enzymatic degradation of poly [(R)-3-hydroxybutyrate] by Comamonas testosterone ATSU of soil bacterium[J]. Polymer Degradation and Stability,1994, 45(3):379-386.

[17] SCH?魻BER U, THIEL C, JENDROSSEK D. Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoignei[J]. Applied and Environmental Microbiology,2000,66(4):1385-1392.

夜上海论坛 [18] JENDROSSEK D. Microbial degradation of polyesters: A review on extracellular poly(hydroxyalkanoic acid) depolymerases[J]. Polymer Degradation and Stability,1998,59(1-3):317-325.

[19] GILAN I, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology,2004,65(1):97-104.

夜上海论坛 [20] ROSA D S,GABOARDI F, GUEDES C G F, et al. Influence of oxidized polyethylene wax(OPW) on the mechanical, thermal, morphological and biodegradation properties of PHB/LDPE blends [J]. Journal of Materials Science,2007,42(19):8093-8100.

[21] CHANDRA R, RUSTGI R. Biodegradation of maleated linear low-density polyethylene and starch blends [J]. Polymer Degradation and Stability,1997,56(2):185-202.

[22] ALBERTSSON A C, KARLSSON S. Aspects of biodeterioration of inert and degradable polymers[J]. International Biodeterioration & Biodegradation,1993,31(3):161-170.

[23] 何小维,黄 强. 淀粉基生物降解材料[M]. 北京:中国轻工业出版社,2008.262-263.

夜上海论坛 [24] (日)土肥义治,(德)A. 斯泰因比歇尔. 生物高分子 聚酯Ⅲ——应用和商品(第4卷)[M]. 陈国强,译.北京:化学工业出版社,2004.49-53.

夜上海论坛 [25] NISHIOKA M, TUZUKI T, WANAJYO Y, et al. Biodegradable Plastics and Polymers[M]. Amsterdam: Elsevier Science,1994. 584-590.

夜上海论坛 [26] RATTO J A, STENHOUSE P J, AUERBACH M, et al. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system [J]. Polymer,1999,40(24): 6777-6788.

[27] TUDORACHI N, CASCAVAL C N, RUSU M, et al. Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials [J]. Polymer Testing,2000,19(7):785-799.

[28] TORRES A, LI S M, ROUSSOS S, et al. Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers [J]. Applied and Environmental Microbiology,1996,62(7):2393-2397.

夜上海论坛 [29] PRANAMUDA H, TOKIWA Y. Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis[J]. Biotechnology Letters,1999,21(10):901-905.

[30] TOMITA K, KUROKI Y, NAGAI K. Isolation of thermophiles degrading poly(L-lactic acid)[J]. Journal of Bioscience and Bioengineering,1999,87(6):752-755.

[31] KAY M J, MORTON L H G, PRINCE E L. Bacterial degradation of polyester polyurethane [J]. International Biodeterioration,1991,27(2):205-222.

[32] SHAH A A. Role of microorganisms in biodegradation of plastics [D].Islamabad:Quaid-i-Azam University,2007.

夜上海论坛 [33] TANG Y W, LABOW R S, SANTERRE J P. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes[J]. Biomaterials,2003, 24(17):2805-2819.

第3篇

夜上海论坛 关键词:聚氨酯泡沫;生物降解;填充;土壤掩埋;微晶纤维素

中图分类号:TQ328.3 文献标识码:A

硬质聚氨酯泡沫塑料(RPUF)绝热效果好,比强度大,电学性能及隔音效果优越,而且通过调整配方,可以制成不同规格的制品以满足不同要求,作为一种绝热保温与结构材料,已经广泛地应用于建筑、冷藏、航空航天等领域[1]。然而其使用后的废弃物因在自然条件下难以降解,给人类赖以生存的环境造成了不可忽视的负面影响。因此研究和开发可生物降解型聚氨酯材料迫在眉睫。将一些易于生物降解材料填充到聚氨酯中,是研发生物降解型聚氨酯材料的一个重要方向[2-6]。

纤维素是地球上储藏量最大的天然高分子,作为可再生的天然材料是生物降解材料的良好原料[7-9]。本文采用聚醚多元醇和多异氰酸酯为主要原料,在聚氨酯发泡过程中加入微晶纤维素,制备了填充型可生物降解硬质聚氨酯泡沫塑料(RPUF)并研究了其力学和降解性能。

1 实验部分

1.1 原材料

聚醚N303,天津石化三厂; [0]多苯基多亚甲基多异氰酸酯(PAPI),烟台万华聚氨酯股份有限公司;硅油AK8807、三乙醇胺,分析纯,成都化学试剂厂;微晶纤维素(MCC),西安北方惠安精细化工有限公司公司生产;微晶纤维素使用前经真空烘箱干燥至恒重,存储于干燥器中备用;水为蒸馏水。

1.2 仪器与设备

夜上海论坛 电热鼓风恒温干燥箱,DB210SC型,成都天字试验设备有限责任公司;增力电动搅拌器,JJ-1型,江苏金坛市医疗仪器厂;模塑成型模具,自制;扫描电子显微镜,S440型,Leica Cambridge公司;红外光谱仪,?Nicolet-5700型,美国尼高力仪器公司;热重分析仪,TGA-SDTA851型,德国耐驰公司;电子万能材料试验机,AG-1OTA型,日本岛津公司;简支梁冲击实验机,XJJ-5型,承德材料实验机厂。

1.3 微晶纤维素填充可生物降解RPUF的制备

首先将一定比例的聚醚多元醇N303、三乙醇胺、硅油AK8807、水和微晶纤维素配制成一组分,并搅拌均匀记作A组分;多苯基多亚甲基多异氰酸酯(PAPI)作为B组分。上述两组分的温度调节到22℃左右,然后将B组分倒入A组分中经高速搅拌均匀后浇注入预热到45℃左右的模具内发泡成型。经熟化处理脱模后得到材料样品,然后按要求加工成所需试件,进行相关的性能测试。

1.4 力学性能测试

夜上海论坛 压缩性能:参照GB/ T 8813-88进行,试件尺寸为Φ50mm ×50mm ,测试时的横梁速度为5.00mm/min,温度25℃,湿度65%RH;

夜上海论坛 冲击性能:参照GB/ T 11548-89塑料冲击实验方法进行, 试件尺寸为10mm ×15mm ×120mm,摆锤能量1J,温度25℃,湿度65%RH。

1.5 降解性能测试

夜上海论坛 所制备样品的降解性能表征采用户外土埋法降解实验法进行:将样品按一定间隔埋入普通园艺土壤下约10cm处,让其在自然条件下降解。每隔一段时间,从土壤中取出一些硬质聚氨酯泡沫样品,用去离子水小心清洗,然后在50℃电热鼓风干燥箱中放置24h,进行干燥。最后再在常温常湿的条件下至少平衡24h,做如下表征:

(1) 失重率:失重(%)=[(W0-WS)/ W0]×100计算,式中:W0-泡沫体原始质量;WS-降解后泡沫体质量。

(2) 红外分析:降解产物的红外光谱用KBr压片法测试。

夜上海论坛 (3) 热重分析:降解产物的热重分析在氮气氛下测试,升温速度10℃/min,温度范围:常温-700℃。

夜上海论坛 (4) 扫描电子显微镜:取降解产物试样脆断,对断面进行喷金处理后用扫描电子显微镜测断面形态,加速电压为20KV。

2 结果与讨论

2.1 填料在RPUF中的最大填充量

夜上海论坛 制备出的硬质聚氨酯泡沫塑料的密度为0.1g/cm3左右,当微晶纤维素的添加量在80份(23.3wt%)以下时,发泡充分,样品表面平整,未出现收缩现象。进一步提高填充量,由于表面填料较多, 使泡沫无法支持, 出现塌泡现象,样品出现明显的收缩,因此最大填充量约为23.3wt%。

夜上海论坛 2.2 微晶纤维素填充可生物降解RPUF的力学性能

夜上海论坛 微晶纤维素填充可生物降解RPUF的压缩强度与冲击强度与填料用料的关系如图1所示。当少量微晶纤维素加入RPUF基体后,其压缩性能和冲击性能均有大幅度的下降,此时聚氨酯分子间的相互作用以及交联结构已在一定程度受到影响,而填料与聚氨酯之间的相互作用也较弱,因此导致其力学性能下降。随着填料用量的增大,填料分子与聚氨酯分子键的相互作用增强,使其压缩强度有所改善;进一步增加填料用量时,试样的压缩强度开始减小,这可能由于RPUF在受压时主要由聚氨酯基体构成的泡孔壁和支柱来承受外力,而过高含量的填料降低了基体树脂含量,故压缩性能下降。而冲击性能随着填料用量的增加却未得到改善,这可能因为微晶纤维素填料本身性脆,与聚氨酯基体相容性差,使得填料和基体界面间相互作用较弱,当样品受冲击断裂时,裂纹扩展在填料和基体界面间进行,填料含量越多裂纹扩展越严重,试样的冲击性能就越差。

夜上海论坛 2.3 微晶纤维素填充可生物降解RPUF的降解性能

2.3.1 土壤微生物处理下微晶纤维素填充RPUF失重和FTIR分析

经过不同的时间间隔后,样品的失重情况如图2所示。图2(a)中可以看出,样品降解120天后的失重率随微晶纤维素用量的增大而增大;

夜上海论坛 (b) 填料用量80份时,失重率―时间关系

夜上海论坛 图2 微晶纤维素填充可生物降解RPUF

土壤掩埋试验后的失重率

夜上海论坛 图2(b)中当填料用量均为80份时,失重率随降解时间的延长而增大,120天后失重率可达10.8wt%。

图3为微晶纤维素填充硬质聚氨酯泡沫塑料降解产物的红外光谱图。图3(a)中当微晶纤维素填充量为80份时,样品在1730cm-1处的氨酯键中羰基吸收峰随着降解时间延长逐渐变弱,说明样品中的氨酯键在土壤微生物的作用下发生断裂,时间越长降解效果越好。图3(b)为不同微晶纤维素填充量的RPUF降解120天后的红外谱图,从图中可以看出样品氨酯键中羰基吸收峰随着填料用量增大逐渐变弱,说明微晶纤维素含量越高,样品越易于生物降解。

夜上海论坛 2.3.2 土壤微生物处理下微晶纤维素填充RPUF热重分析

分别对不同降解时间以及不同填充量的降解样品进行TG分析,结果列于表1、表2中。从表1可以看出,随着土壤掩埋时间的延长,样品的最大热分解速率温度逐渐降低说明了泡沫体的立体网状结构受到损坏,发生了降解,并且时间越长,降解效果越明显。而表2中样品的最大热分解速率温度随着微晶纤维素用量的增加逐渐降低表明填料越多,样品越易于生物降解。

夜上海论坛 2.3.3 土壤微生物降解处理后微晶纤维素填充RPUF的表面形貌变化

夜上海论坛 用扫描电子显微镜观察了微晶纤维素填充RPUF在土壤微生物的作用下表面形貌的变化。在土壤微生物降解前微晶纤维素填充量为80份的RPUF表面平整,微孔致密均匀(图4A),随着土壤微生物降解时间的延长,孔洞变大,松散,不均匀(图4B),孔洞破损逐渐变大(图4C)。在放大2000倍的SEM照片中可以看见样品表面被微生物侵蚀后的碎片(图4D)。这进一步说明微生物对聚氨酯的结构有所破坏。同样在图5中可以看出在降解周期相同的条件(均为120天)下,微晶纤维素含量越高的样品受微生物侵蚀破坏的越严重。这与以上红外以及热重分析得到的结果一致。

3 结论

本文在普通聚氨酯泡沫中加入易于生物降解的微晶纤维素制得了密度为0.1g/cm3左右,外观和力学性能良好的填充型可生物降解聚氨酯泡沫塑料,最大填充量达23.3wt%,土壤掩埋实验证明样品具有一定的生物降解性,最大填充量的样品经过120天土壤微生物降解后失重率可达10.8wt%。

参考文献:

夜上海论坛 [1] 李绍雄,朱吕民. 聚氨酯树脂[M]. 南京:江苏科学技术出版社, 1992

夜上海论坛 [2] 钱伯章,朱建芳.可降解塑料的应用现状和发展趋势[J]. 上海化工,2004,29(10):1-4

夜上海论坛 [3] 秦蓓,张小清,范涛.稻壳添加聚氨酯泡沫塑料[J].化工进展,2003,22(10):1093-109

[4] H Hatakeyama,S Hirose,T Hatakeyama,K Nakamura,et al. TG-FTIR studies on biodegradable polyurethanes containing mono-and disaccharide components[J]. J.M.S.Pure Appl Chem.,1995,A32(4):743

夜上海论坛 [5] 戈进杰. 基于天然资源的可生物降解材料:由含单宁的树皮制备聚氨酯[J]. 自然杂志,1998,20(2):98

夜上海论坛 [6] 郭金全.林剑清. 玉米淀粉对PU泡沫化学改性的研究[J]. 厦门大学学报,1996,(4):642-644

[7] Ivana Marova, Stanislav Obruca, Vladimir Ondruska.et al.Biodegradation of polyurethane foams modified by carboxymethyl cellulose by several bacteria [J]. Journal of Biotechnology. 2007.131(2):S170-S171

[8] 戈进杰,徐江涛,张志楠.基于天然聚多糖的环境友好材料(Ⅱ)―麻纤维和芦苇纤维多元醇的生物降解聚氨酯[J].化学学报.2002,60(4):732-736.

夜上海论坛 [9] 张捷,于九皋.多糖类生物降解材料的研究进展[J]

中国塑料,1995,9(6):17-26.

作者简介: