夜上海论坛 精品范文 挖掘技术论文范文

挖掘技术论文范文

夜上海论坛前言:我们精心挑选了数篇优质挖掘技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

挖掘技术论文

第1篇

[关键词]数据挖掘数据挖掘方法

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(DataMining)技术由此应运而生。

一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

夜上海论坛 3.聚类分析。聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异,常用的技术有分裂算法,凝聚算法,划分聚类和增量聚类。聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价,此外,聚类分析还用于对孤立点的检测。并非由聚类分析算法得到的类对决策都有效,在运用某一个算法之前,一般要先对数据的聚类趋势进行检验。

4.决策树方法。决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每个结点说明了对实例的某个属性的测试,该结点的每一个后继分支对应于该属性的一个可能值,分类实例的方法是从这棵树的根结点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应的树枝向下移动。决策树方法是要应用于数据挖掘的分类方面。

5.神经网络。神经网络建立在自学习的数学模型基础之上,能够对大量复杂的数据进行分析,并可以完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析,神经网络既可以表现为有指导的学习也可以是无指导聚类,无论哪种,输入到神经网络中的值都是数值型的。人工神经元网络模拟人脑神经元结构,建立三大类多种神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适应能力的种种优点。

夜上海论坛 6.遗传算法。遗传算法是一种受生物进化启发的学习方法,通过变异和重组当前己知的最好假设来生成后续的假设。每一步,通过使用目前适应性最高的假设的后代替代群体的某个部分,来更新当前群体的一组假设,来实现各个个体的适应性的提高。遗传算法由三个基本过程组成:繁殖(选择)是从一个旧种群(父代)选出生命力强的个体,产生新种群(后代)的过程;交叉〔重组)选择两个不同个体〔染色体)的部分(基因)进行交换,形成新个体的过程;变异(突变)是对某些个体的某些基因进行变异的过程。在数据挖掘中,可以被用作评估其他算法的适合度。

7.粗糙集。粗糙集能够在缺少关于数据先验知识的情况下,只以考察数据的分类能力为基础,解决模糊或不确定数据的分析和处理问题。粗糙集用于从数据库中发现分类规则的基本思想是将数据库中的属性分为条件属性和结论属性,对数据库中的元组根据各个属性不同的属性值分成相应的子集,然后对条件属性划分的子集与结论属性划分的子集之间上下近似关系生成判定规则。所有相似对象的集合称为初等集合,形成知识的基本成分。任何初等集合的并集称为精确集,否则,一个集合就是粗糙的(不精确的)。每个粗糙集都具有边界元素,也就是那些既不能确定为集合元素,也不能确定为集合补集元素的元素。粗糙集理论可以应用于数据挖掘中的分类、发现不准确数据或噪声数据内在的结构联系。

夜上海论坛 8.支持向量机。支持向量机(SVM)是在统计学习理论的基础上发展出来的一种新的机器学习方法。它基于结构风险最小化原则上的,尽量提高学习机的泛化能力,具有良好的推广性能和较好的分类精确性,能有效的解决过学习问题,现已成为训练多层感知器、RBF神经网络和多项式神经元网络的替代性方法。另外,支持向量机算法是一个凸优化问题,局部最优解一定是全局最优解,这些特点都是包括神经元网络在内的其他算法所不能及的。支持向量机可以应用于数据挖掘的分类、回归、对未知事物的探索等方面。

事实上,任何一种挖掘工具往往是根据具体问题来选择合适挖掘方法,很难说哪种方法好,那种方法劣,而是视具体问题而定。

三、结束语

目前,数据挖掘技术虽然得到了一定程度的应用,并取得了显著成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将在更加广泛的领域得到应用,并取得更加显著的效果。

第2篇

关键词:挖掘机;维修;保养

随着科技的进步,现代挖掘机一般都采用了机电液一体化控制模式,我们在排除一些故障时,解决的多是发动机、液压泵、分配阀、外部负荷的匹配问题。一般在挖掘机作业中,这几方面不能匹配,经常会表现为:发动机转速下降,工作速度变慢,挖掘无力以及一些常见问题。

夜上海论坛 一、发动机转速下降

首先要测试发动机本身输出功率,如果发动机输出功率低于额定功率,则产生故障的原因可能是燃油品质差、燃油压力低、气门间隙不对、发动机的某缸不工作、喷油定时有错、燃油量的调定值不对、进气系统漏气、制动器及其操纵杆有毛病和涡轮增压器积炭。如果发动机输出动力正常,就需要查看是否因为液压泵的流量和发动机的输出功率不匹配。

夜上海论坛 液压挖掘机在作业中速度与负载是成反比的,就是流量和泵的输出压力乘积是一个不变量,泵的输出功率恒定或近似恒定。如果泵控制系统出现了故障,就不能实现发动机、泵及阀在不同工况区域负荷优化匹配状态,挖掘机从而将不能正常工作。此类故障要先从电器系统入手,再检查液压系统,最后检查机械传动系统。

二、工作速度变慢

夜上海论坛 挖掘机工作速度变慢主要原因是整机各部磨损造成发动机功率下降与液压系统内泄。挖掘机的液压泵为柱塞变量泵,工作一定时间后,泵内部液压元件(缸体、柱塞、配流盘、九孔板、龟背等)不可避免的产生过度磨损,会造成内漏,各参数据不协调,从而导致流量不足油温过高,工作速度缓慢。这时就需要整机大修,对磨损超限的零部件进行修复更换。

夜上海论坛 但若不是工作时间很长的挖掘机突然变慢,就需要检查以下几方面。先查电路保险丝是否断路或短路,再查先导压力是否正常,再看看伺服控制阀-伺服活塞是否卡死以及分配器合流是否故障等,最后将液压泵拆卸进行数据测量,确认挖机问题所在。

三、挖掘机无力

夜上海论坛 挖掘无力是挖掘机典型故障之一。对于挖掘无力可分为两种情况:一种为挖掘无力,发动机不憋车,感觉负荷很轻;第二种为挖掘无力,当动臂或斗杆伸到底时,发动机严重憋车,甚至熄火。

①挖掘无力但发动机不憋车。挖掘力的大小由主泵输出压力决定,发动机是否憋车取决于油泵吸收转矩与发动机输出转矩间的关系。发动机不憋车说明油泵吸收转矩较小,发动机负荷轻。如果挖掘机的工作速度没有明显异常,则应重点检查主泵的最大输出压力即系统溢流压力。如果溢流压力测量值低于规定值,表明该机构液压回路的过载溢流阀设定值不正确,导致该机构过早溢流,工作无力。则可以通过转动调整螺丝来调整机器。②挖掘无力,发动机憋车。发动机憋车表明油泵的吸收转矩大于发动机输出转矩,致使发动机超载。这种故障应首先检查发动机速度传感系统是否正常,检查方法与前文所述发动机检查方法类似。经过以上细致的检查与排除故障,发动机速度传感系统恢复正常功能,发动机憋车现象消失,挖掘力就会恢复正常。

四、挖掘作业过程中的常见故障

挖掘机在施工作业中经常出现的一些普遍的故障,如:挖机行走跑偏,原因可能为行走分配油封(又称中心回转接头油封)损坏;两个液压泵流量大小不一;一边行走马达有问题。液压缸快速下泄则可能为安全溢流阀封闭不严,或缸油封严重损坏等等。

五、挖掘机的日常保养

夜上海论坛 为了防止挖掘机的故障发生,在日常使用过程中需要十分注意对挖掘机的保养。日常保养包括检查、清洗或更换空气滤芯;清洗冷却系统内部;检查和拧紧履带板螺栓;检查和调节履带反张紧度;检查进气加热器;更换斗齿;调节铲斗间隙;检查前窗清洗液液面;检查、调节空调;清洗驾驶室内地板;更换破碎器滤芯(选配件)。清洗冷却系统内部时,待发动机充分冷却后,缓慢拧松注水口盖,释放水箱内部压力,然后才能放水;不要在发动机工作时进行清洗工作,高速旋转的风扇会造成危险;当清洁或更换冷却液时,应将机器停放在水平地面上。

夜上海论坛 同时在启动发动机前需要检查冷却液的液面位置高度(加水);检查发动机机油油位,加机油;检查燃油油位(加燃油);检查液压油油位(加液压油);检查空气滤芯是否堵塞;检查电线;检查喇叭是否正常;检查铲斗的;检查油水分离器中的水和沉淀物。

夜上海论坛 挖掘机在日常工作中遇到的故障还有很多,这里只是介绍了较为常见的几类故障的维修方法,并且为了减少故障的发生,对挖掘机的日常保养是很重要的。只有做到保养和维护的双重保障,才能保障挖掘机更好的正常工作。

参考文献:

夜上海论坛 [1]钟陈添.挖掘机液压系统的常见故障分析及排除.科技资讯,2007,(22).

第3篇

[关键词]数据挖掘数据挖掘方法

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(DataMining)技术由此应运而生。

夜上海论坛 一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

夜上海论坛 1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

夜上海论坛 3.聚类分析。聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异,常用的技术有分裂算法,凝聚算法,划分聚类和增量聚类。聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价,此外,聚类分析还用于对孤立点的检测。并非由聚类分析算法得到的类对决策都有效,在运用某一个算法之前,一般要先对数据的聚类趋势进行检验。

4.决策树方法。决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每个结点说明了对实例的某个属性的测试,该结点的每一个后继分支对应于该属性的一个可能值,分类实例的方法是从这棵树的根结点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应的树枝向下移动。决策树方法是要应用于数据挖掘的分类方面。

夜上海论坛 5.神经网络。神经网络建立在自学习的数学模型基础之上,能够对大量复杂的数据进行分析,并可以完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析,神经网络既可以表现为有指导的学习也可以是无指导聚类,无论哪种,输入到神经网络中的值都是数值型的。人工神经元网络模拟人脑神经元结构,建立三大类多种神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适应能力的种种优点。

6.遗传算法。遗传算法是一种受生物进化启发的学习方法,通过变异和重组当前己知的最好假设来生成后续的假设。每一步,通过使用目前适应性最高的假设的后代替代群体的某个部分,来更新当前群体的一组假设,来实现各个个体的适应性的提高。遗传算法由三个基本过程组成:繁殖(选择)是从一个旧种群(父代)选出生命力强的个体,产生新种群(后代)的过程;交叉〔重组)选择两个不同个体〔染色体)的部分(基因)进行交换,形成新个体的过程;变异(突变)是对某些个体的某些基因进行变异的过程。在数据挖掘中,可以被用作评估其他算法的适合度。

夜上海论坛 7.粗糙集。粗糙集能够在缺少关于数据先验知识的情况下,只以考察数据的分类能力为基础,解决模糊或不确定数据的分析和处理问题。粗糙集用于从数据库中发现分类规则的基本思想是将数据库中的属性分为条件属性和结论属性,对数据库中的元组根据各个属性不同的属性值分成相应的子集,然后对条件属性划分的子集与结论属性划分的子集之间上下近似关系生成判定规则。所有相似对象的集合称为初等集合,形成知识的基本成分。任何初等集合的并集称为精确集,否则,一个集合就是粗糙的(不精确的)。每个粗糙集都具有边界元素,也就是那些既不能确定为集合元素,也不能确定为集合补集元素的元素。粗糙集理论可以应用于数据挖掘中的分类、发现不准确数据或噪声数据内在的结构联系。

夜上海论坛 8.支持向量机。支持向量机(SVM)是在统计学习理论的基础上发展出来的一种新的机器学习方法。它基于结构风险最小化原则上的,尽量提高学习机的泛化能力,具有良好的推广性能和较好的分类精确性,能有效的解决过学习问题,现已成为训练多层感知器、RBF神经网络和多项式神经元网络的替代性方法。另外,支持向量机算法是一个凸优化问题,局部最优解一定是全局最优解,这些特点都是包括神经元网络在内的其他算法所不能及的。支持向量机可以应用于数据挖掘的分类、回归、对未知事物的探索等方面。

夜上海论坛 事实上,任何一种挖掘工具往往是根据具体问题来选择合适挖掘方法,很难说哪种方法好,那种方法劣,而是视具体问题而定。

三、结束语

目前,数据挖掘技术虽然得到了一定程度的应用,并取得了显著成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将在更加广泛的领域得到应用,并取得更加显著的效果。