前言:我们精心挑选了数篇优质测量论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
1.1悬浇施工控制
(1)箱梁水准点引测从0#、1#块顶板水准点利用钢尺引测到左右箱室人孔旁所做高程点,测算出所布设高程点的高程,用以作为以后底模标高测量的后视水准点。(2)底模标高测量在每个块段底腹板浇筑前,测算出底模最外缘侧的模板高程,按照监控单位发放的施工指令中给出的立模标高进行复核,调整。(3)底模高程点标高测量在每个块段底腹板浇筑前和浇筑完成后,各测出左右箱室焊设的模板高程点的高程,算出其变化量。(4)顶板高程点标高测量在每个块段顶板张拉前和张拉完成后,各测出顶板焊设的模板高程点的高程,算出焊设的测点的挠度变化量。
1.2箱梁合拢控制
(1)在各孔的边跨合拢块施工前,对各悬臂箱梁高程进行联测。(2)合拢段施工的高程观测按以下6个工况实测:①安装模板前;②浇筑混凝土前;③浇筑混凝土后;④张拉部分纵向预应力钢束后;⑤拆除临时支撑后;⑥张拉完所有预应力钢束后。(3)对于连续箱梁的中孔合拢,还应在主墩临时支座拆除的前后对各测控点进行监测。
2对称平衡施工
施工中严格按照平衡施工的要求进行,最大混凝土浇筑重量误差不得大于该梁段自重的30%,并在混凝土浇筑过程中实施监控,确保箱梁自重误差不大于设计要求的3%,控制梁段上的施工堆积物并及时清理箱梁中的施工垃圾,以避免由于施工荷载和桥面杂物的不平衡引起测量数据的不正确。
3质量保证措施
3.1抓好事前控制
夜上海论坛 3.1.1抓好人的质量施工测量放样工作是靠人干出来的,人是工作质量的决定因素,因此提高自身的思想水平、业务技术,工作能力、工作责任是极其重要的,同时必须了解和管理好所管辖内测量人员,有利于开展工作,必要时做好配合工作。3.1.2抓好测量仪器的质量测量放样必须有符合精度的仪器设备,才能确保精度和速度,除必要按规定进行鉴定,还必须在使用中时刻注意仪器的性能和状态,发现异常及时校正。3.1.3抓好基准点的精度平面高程控制点是实施施工放样的基准点,它的精度优劣直接影响放样精度。因此,施工前必须对控制点进行复测,并根据建筑物的分布,为便于放样,还需进行加密。施工阶段确保控制点的稳定完好,有破坏变动,应及时补埋补测。3.1.4抓好设计图纸的复核按设计图纸的数据进行施工,是我们的职责,设计单位要求对图纸进行复核是我们的义务,也是为了我们确保施工放样数值的准确。在复核发现问题,应及时地向设计单位反映。3.1.5学好规范、掌握规范、执行好规范规范是我们判别测放精度施工质量的标准,要养成严格执行规范的习惯,为此全面地学好规范,深刻地理解规范,认真地执行规范。在保证质量的前提下,把好执行规范,不断地总结提高。
3.2抓好事中控制
夜上海论坛 在检查时尽可能用自己的仪器自己测,及时发现问题及时解决,有些问题应及时汇报给相关的专业工程师。并有严格报验制度。3.2.1平面位置控制设站检查:全站仪对中整平后设置气象元素棱镜常数,输入站点后视点坐标,后视定向后要测距测坐标,一般误差控制在3mm以内。对每个放样点的检查,一般采用极坐标法,即以方位角定向、距离定点,再测坐标作校对。当检查点较多或时间较长时,要及时地复查后视点。当测放水中桩或不能直接定桩时,可放辅桩,但要标明辅桩与主桩的关系(方向和距离)。检查结束后,应到点位处一看一量,看所放的点组成的线形是否与设计院设计相符,量各桩间距是否与设计值相同。护栏的放样应保证其线形流畅,保证桥面宽度,其线形要确保不出现折角。3.2.2高程检查首先要经常检查水准仪的i角,确保其良好的性能,还需检查脚架及塔尺接头是否完好。检查时须从一个水准点联测到另一个水准点,这样可以:①发现所观测的是否闭合;②水准点是否变动;③水准仪有无问题。当要引测结构物上部或下部时可采用钢尺倒挂法,钢尺必须要垂角,最好用正、倒挂尺校检。
3.3事后总结
(1)平面控制方面目前采用的坐标系:①WGS-84大地坐标系;②1980西安坐标系;③1954北京系。(2)高程控制方面国家规定:采用1985国家高程基准点,它与1956黄海高程系的关系式:1985国家高程基准时1956年黄海高程值0.0286m。苏南地区采用吴淞值高程系,它与1956黄海高程系的关系式:吴淞系1956年黄海高程系值+1.8971.6972.097,根据不同地区而定。(3)加密控制对被破坏的不稳定的点必须重新埋测。桥梁处的点必须稳定可靠,并作为以后联测的起讫点。复测时设计路线不宜太长,尽量控制在2-3km,以减少误差的积累。(4)导线平差中对X、Y的fx、fy分配,可应仅考虑距离而应当按方位角距离的联合影响来分配。(5)采用全站仪用极坐标放样最大距离的控制国家规定最大误差是中误差的2倍,以J2级测一个单角,其精度约在10″左右,而放样桥梁桩、柱的平面位置,则最大要求<5mm。S=ρ″/10″×5mm=103m,最好控制在100m以内。
4结语
地籍测量必须准确定位每一项土地接线,绘制精准的地籍图。一般地籍测量中要求数据单位为厘米,通过GPS-RTK测量技术测绘地籍信息,然后保存到GPS内,用于构成精准的地籍信息图[2]。GPS-RTK测量技术在多项工具的支持下,实现细化测绘。所以,主要在基准站、测绘作业以及内业处理三方面,分析GPS-RTK在地籍测绘中的应用。
1.1选定基准站
基准站是GPS-RTK测量技术的核心,支撑测量技术的顺利进行。准确选定基准站的位置,有利于GPS-RTK发挥测量优势,因此,针对基准站的选择,提出三点要求:(1)确保基准站的高度,基准站发射信号时,需借助天线电台,为避免传输受阻,尽量保障足够高的选址;(2)避开反射作业区,部分水域、建筑对传输系统造成影响,导致GPS-RTK的测量信息无法顺利传输,丢失诸多信息数据,基准站在安置时,必须在无反射物的环境中;(3)基准站安置在无线电通信稳定地区,如果选定地区存在信号干扰,需根据地籍测量的需求,重新选定基准站的位置,用于控制基准站的测量环境,避免产生电波干扰。
1.2基于GPS-RTK的测绘作业
GPS-RTK测量技术在地籍中的测绘作业,也称为外业测量,分配测绘人员。一般测绘由两名测绘人员构成,一人留守在基准站处,另一人实行定点测绘,即:记录每一个测绘点的数据,便于绘制测量图。规划GPS-RTK在测绘作业中的具体应用流程如下。第一,确定GPS-RTK所使用的坐标系,可以根据地籍测绘的需求设定,也可直接采用国家标准级坐标系,再规划投影参数,如:GPS-RTK确定地籍测量的已知点,规定中央子午线,如果子午线为已知,直接选定,如为未知,则需选择合适的子午线,以地籍测绘的当地环境为主。第二,关闭GPS-RTK测量装置的参数,设置基准站。基准站同样分为已知、未知两种,两种布设方式主要取决于基准站的设置点:(1)已知点处基准站进入测量状态时,需要经过人工操作,通过Tab功能存储基准点并命名,所有待测点的目标值输入完成后,提取存取的基准点,规划GPS-RTK的测量时间,完成基准站的布设;(2)未知点与已知点存在明显差异,其在定位基准站坐标时,需以高程为主,尽量拉近高程值,由此才可确定基准站的布设效果。第三,实质操作,促使GPS-RTK测量技术进入工作状态,测量人员根据操作项目,执行地籍测量。基准点中包含GPS-RTK的测量结果,根据对应按键,测量人员准确获取测量结果,必要时可实行转换参数,如果测量点的数据存在较大误差,GPS-RTK还需执行重测,控制误差在标准范围内。
1.3内业处理
夜上海论坛 测绘作业中得出的测量参数组成GPS-RTK的数据库,无法直接应用在地籍绘图上,所以还需转化数据格式,转化的数据格式需要与所用的绘制软件保持一致,促使测量人员迅速完成地籍绘制[3]。比较常用的绘制软件为CASS5.0,GPS-RTK数据转化时,可以该软件为主,保障地籍测量的真实性。由此,提高测量数据的应用能力,确保各项数据的可用程度,不会出现无用数据,发挥GPS-RTK数据存储的优势。
夜上海论坛 2GPS-RTK在地籍测量中的质量控制
夜上海论坛 GPS-RTK在地籍测量中的应用,有效提高测量数据的质量和精准度,成为地籍测量中不可缺少的技术。GPS-RTK在应用的过程中,必须依靠科学的质量控制措施,才能完善地籍测量。
2.1构建控制网约束测量数据
夜上海论坛 控制网是GPS-RTK在地籍测量中的基础,由传统GPS测量技术获取相关数据,用于检测地籍测量中的各项数据。控制网在检测数据的同时,控制GPS-RTK测量技术的准确度,重点检测转换、输入中的测量数据,以免干预数据的准确度。控制网可以控制GPS-RTK测量技术在任何情况下的测量质量,基本不会出现测量误差,完善GPS-RTK在地籍测量中的各个数据链。
夜上海论坛 2.2排除干扰控制测量误差
虽然控制基准站的位置,但是难免会出现不同情况的误差干扰,通过质量控制的方式,主动解决地籍测量中的误差,排除干扰。GPS-RTK在地籍测量中的实际应用,基本会产生误差,证实质量控制的重要性,测量人员在排除误差时,以手簿为主,通过核实、观测的方式,判断测量数据的真实价值,还可在测量点上实行重复测量,分析多次测量的结构,得出最准确的测量数据[4]。GPS-RTK在地籍测量中的质量控制,有利于稳定测绘结果,体现数据准确的价值,规避地籍测量中的误差。防止由于测量误差引发地籍纠纷,保障地籍测量的质量。
3结束语
首先将已标定过的螺线管和HWR腔安装就位,并且用三维可调机构反复调节各元件至理论位置,其实际安装精度见表1.然后将测微准直望远镜所用十字丝目标及其支架,安装在冷质量元件上,并将其对准至设计位置.
2配置偏心距和旋转角
由于测微准直望远镜低温下监测,只能透过观察窗向真空室内部的光学靶观测.而光的传播存在折射和衍射,会对光学观测产生误差.采用数字水平仪调平望远镜的视准轴,并且借助激光跟踪仪事先将远近两处的基准靶和望远镜的视准轴中心调整至统一高程面,可以消弱光透过空气和玻璃观察窗不同介质时的折射误差.为了避免光的衍射误差,可以人为将不同十字丝目标的上下左右配置在±0.2mm以内不同偏心距上(见图4).由于六个十字丝之间间隔太小,为了便于观测,可以将不同十字丝目标配置不同的旋转角(30度和60度),间隔放置在螺线管和超导腔下方(见图4).
3理论模拟
在低温压力容器的元件中,除了承受由载荷(压力、外载)产生的机械应力外,由于在运行过程中元件的温度场发生变化,还将承受热应力的作用[5].为了确定腔体、磁体、支撑以及氦容器在重力和冷缩变形时的补偿量和热应力,以减小或消除应力和变形.必须采用有限元方法,模拟低温下所有冷质量组件的热应力和冷缩变形.本文采用SOLID-WORKS建模,使用ANSYS进行热应力模拟.
3.1有限元模型及其材料属性
夜上海论坛 冷质量及其支撑组件的有限元模型如图3所示.模型中磁体、氦槽及其本身焊接连接支架采用316LSS不锈钢材料,HWR腔及其本身焊接连接支架为钛材,冷质量支撑组件和腔体的6根横梁采用钛材料,准直支架及十字丝目标采用G10材料.模型中支撑杆室温端为球铰接,支撑杆低温端与钛架之间为绑定.不同接触材料之间采用螺栓连接,模拟为不同接触材料之间可相互滑动且不分离.所有冷质量材料的机械特性见表2.
3.2边界条件与模拟结果
实测的两次试验采用液氮降温,模型中支撑室温端球铰链接触面为300K室温,所建模型腔体、氦容器以及超导磁体接触面处为80K,80K表面热负荷0.1W/m2.80K下竖直和横向位移计算结果见表3,螺线管和HWR底部上移约2.0mm,横向向中心收缩约1mm.
4实测分析
4.1低温监测
先用WYLER电子水平仪,将测微准直望远镜的视准轴调平,精度控制在0.05mm/m内[6].再调焦至远处基准靶,使用旋转按钮,摆动镜筒使其对齐远处目标中心(见图5第1步);然后调整焦距瞄准近处基准靶,使用平移工作台,移动镜筒至近处目标中心(见图5第2步).重复上述两步“远旋转移”多次,调整镜筒至两基准靶偏心线上,控制其直线度误差在0.1mm以内.图5中虚线矩形框代表已旋转的测微准直望远镜,实线矩形框代表已平移的测微准直望远镜,圆形目标为MAT基准靶.由于同轴十字丝目标存在加工误差,所以需要使用测微准直望远镜,借助可调丝扣,调整六个十字丝中心上下左右至设计偏心线位置.由于光学仪器不可避免地存在瞄准误差,而且瞄准误差的大小与距离成正比,呈正态分布.所以为了提高测量精度,应该采用多次测量取平均值,和尽量缩短瞄准距离的方法[7].
4.2数据分析
夜上海论坛 两次试验降至液氮温区时跟踪仪和望远镜监测数据见图6和7.80K时竖直方向上跟踪仪监测到2号螺线管向上移动1.8mm,望远镜监测到2号螺线管向上移动1.9mm;80K时横向跟踪仪监测到2号螺线管向中心移动1mm,望远镜监测到2号螺线管向中心移动0.9mm.
5结论