夜上海论坛前言:我们精心挑选了数篇优质金融统计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

加法——上海住房面积的统计是否超乎想象地简单?
每年,上海政府部门都要公布上海的人均建筑面积、人均居住面积指标。其目的为说明人民住房水平在“节节高”、“年年高”,更为了彰示政府部门的业绩。那么,“人均建筑面积”、“人均居住面积”又是怎样得来的?得到那些数据又经过了怎样艰苦繁复的调查和计算过程?
夜上海论坛 笔者为了验证上海统计部门有关住房统计数据的准确性,曾经历过了艰苦繁复的计算,但计算结果总与政府公布的数据大相径庭。是一个突发的奇想,使笔者在半个小时内就算出了与统计部门数据基本吻合的上海十年来的“居民住房总建筑面积”以及相关的“人均建筑面积”。其计算结果,“居民住房总建筑面积”与各类统计年鉴公布的相应数据平均只相差3.6%,“人均建筑面积”与建设部近三年的《城镇房屋概况统计公报》中的相应数据百分之百相符。
是什么样的“突发奇想”有如此神奇的效果?笔者是这样“奇想”的:“吗要那么认真?”鬼使神差,笔者信手将1995年以来每上一个年度的住宅建筑面积与当年竣工的商品住宅建筑面积相加,结果就与统计部门“统计”的“居民住房建筑面积”基本相符,再将统计年鉴中公布的“非农人口”与“居民住房建筑面积”相除,就得到了与建设部《城镇房屋概况统计公报》数据一模一样的精确到小数点后两位的“上海人均住房建筑面积”!
当然,在1999年到2004年,笔者的计算结果与统计部门数据相比还略少些,多则少10个百分点,少则少5个百分点。于是,笔者再次“突发奇想”,“我如果把空置房、已拆迁房都拿来填空缺呢?”于是,“奇迹”再次出现——笔者“灵感”激发中计算得来的上海住房建筑面积就与政府部门的统计数据99%、100%地相符了!
难道政府统计部门是在如此搞笑的状态下工作的吗?
夜上海论坛 笔者不愿相信。
夜上海论坛 如果需要计算的是上海全部居住房屋总面积,那可以把上年的居住房屋面积加上当年的竣工住宅面积——竣工住宅面积指“报告期内房屋建筑按照设计要求已全部完工,达到住人和使用条件,经验收鉴定合格,可正式移交使用的房屋居住面积的总和”(此解释见由上海市房屋土地资源管理局和上海市统计局联合编辑出版的年鉴类刊物《上海市房地产市场》,下同),但必须减去已经拆迁了的住房面积。然而这样得出的全部居住房屋总面积数不能用作计算人均居住房屋面积的基数,因为当年和往年的竣工住宅中的没有实现销售的部分是不能按照已经移交使用的“人居房”来计算人均面积的。
如果需要计算的是上海已经实现了“人居”的全部住房面积,那么在每个当年度的竣工住宅中必须扣除还没有发生“人居”的面积,并减去已经拆迁了的住房面积。请注意,如果扣除了每个当年度竣工住宅中的没有发生“人居”的面积,在此就不发生“空置房”的概念——空置房指“销售物业报告年度内某类物业经初始登记一年后未售出的数量”,该面积已经包含在初始登记年的竣工住宅面积中。
笔者“第一次奇想”时的计算方法谬误在于:如果是计算全部居住房屋总面积,其没有减去已拆迁房的面积;如果是计算实现了“人居”的全部房屋总面积,其一没有减去已拆迁房的面积,其二没有减去以往年度积存的空置房面积,其三没有减去当年竣工住宅面积中没有实现销售的部分。
照笔者“第一次奇想”时的计算方法来计算“人均住房面积”,那是偷换了“人均住房面积”的概念——虽然统计部门没有对“人均住房面积”的计算方法作出定论,但是,作为体现住房条件改善的最重要指标,人们对“人均住房面积”的约定俗成的理解就是已经实现了“人居”的房屋的人均住房面积!
夜上海论坛 笔者“第二次奇想”时的计算方法谬误更是显而易见——那是明知故犯了——不但不将这些没有发生的、不存在的因素做减法,相反还把这些因素又做了一次加法!每一个按常规思维的人会为此感到不可思议。笔者同样不信政府部门工作人员会故意这么做。这么做的后果是严重的,这使得上海在2005年时的人均住房建筑面积平添了13.33平方米——在把2005年全部竣工住宅作为已经实现了“人居”的前提下!因为1999年到2004年,上海城市的拆迁面积总和加上每年空置住宅面积的累计数是5520万平方米,这些数字不扣除,就是多计算了5520万平方米未实现“人居”和已经灭失了的住房面积,这些数字还要再加一次,那就是在1999年到2004年,多计算了5520×2=11040万平方米未实现“人居”和已经灭失了的住房面积;同样,在1996年~1998年以及2005年的住房面积中,也因为没有扣除拆迁面积和空置住宅面积,导致多计算了4278万平方米的未实现“人居”和已经灭失了的住房面积,只不过没有再重复加一次而已。这样,1996年到2005年每年多计算的“人居”住房面积累计一共是11040万+4278万=15318万平方米——2005年竣工面积中的未实现销售部分还未计算在内,2005年上海的非农业人口是1148.94万,15318÷1148.94=13.33,这13.33就是按照笔者“搞笑计算法”计算出来的属于“多算”的人均建筑面积!
夜上海论坛 笔者相信政府工作人员不会这么搞笑,笔者也认为,计算结果一样不等于计算过程一样,但是,由于政府部门对住房面积的计算过程不见公布,作为上海市民,希望能看到政府统计部门对于上海住房面积的计算过程。
笔者的计算过程见表(一)、表(二)。
表(一)、上海居民“人居”住房面积计算过程表(与统计部门的统计结果相符)单位:万平方米
夜上海论坛 注:1.“统计部门提供的市区住宅建筑面积”中,97、98、99三年的数据来自《上海投资建设统计年鉴》,其他数据来自年鉴刊物《上海市房地产市场》。2.“当年商品住宅竣工面积”来自年鉴刊物《上海市房地产市场》。
夜上海论坛 3.此表中的已拆迁住宅面积和空置住宅面积不包括1976、1997、1998、2005年数据,这些数据见表三和表四。已拆迁住宅面积来源:见《上海市房地产市场》,空置住宅面积来源:2000年前数据见《上海统计年鉴》,2000年后数据散见于媒体报道的官方统计数据。
4.撤县改市增加的住房面积中,99年数据是指青浦、松江的住房面积,2002年数据是指南汇、奉贤的住房面积,2003年数据是指崇明的住房面积。数据来自《上海统计年鉴》。
夜上海论坛 表(二)、2003~2005年上海城镇人均住房建筑面积计算表(与统计部门的统计结果相符)
数据来源:《上海市房地产年鉴》,2005年数据见《上海统计年鉴(2006)》
2.搜集了自2000年到2005年由政府部门认定的每年的空置住宅面积数据。
之所以称为“搜集”,是从2000年开始,《上海统计年鉴》就不再公布每年的空置住宅面积,《上海市房地产年鉴》也不见公布。现在统计部门公布的居民居住房屋总面积中是把空置住宅也当作已居住的房屋面积计算的(年鉴刊物《上海市房地产市场》明确居住房屋面积中包括空置住宅面积),但是就常识而论,空置住宅面积是不能作为“居民人均建筑面积”来充数的。所以,笔者要把空置住宅面积剔除出人均居住面积指标体系。虽然统计部门关于空置量的计算自1999年以来都是“根据上市量与销售量的变化判断空置量的增减或升降趋势”,然而,有总胜于无。空置住宅面积见表(四):
表(四)、商品住宅空置面积(95-2005),单位:万平方米
夜上海论坛 注:1.2005年空置住宅面积根据当年商品房空置面积536.56平方米的60%计算。
2.对于空置量的概念和计算方法,2000年到2005年的年鉴类刊物《上海市房地产市场》均这样注解:“空置量是销售物业报告年度内某物业经济竟初始登记一年后未售出的数量(建筑面积)。由于本市楼宇个数众多,目前根据上市量与销售量的变化判断空置量的增减或升降趋势”。
夜上海论坛 3.计算了不应该当作“居民居住水平提高”来展示的住房面积增加因素。
夜上海论坛 上海市区居住房屋面积增长由多种因素造成,并非所有的增长因素都是“住房改革的成果”,有些增长甚至还是住房改革导致的“后果”。因此,不论是住房总面积增加还是人均住房面积增加,并非都能为之歌颂的。
夜上海论坛 笔者先计算了从1993年浦东新区成立以来,在撤县改区过程中新增加的原县属城镇住房面积。
1991年浦东新区成立前,上海市区区域面积是745平方公里,九个郊县的面积是5590.5平方公里,到2005年,上海市区区域面积是5155平方公里,一个郊县(崇明县)的面积是1185.49平方公里;1991年时市区户口数是269万,郊县户口数是167万,当2005年,市区户口数是468.1万,郊县户口数28.6万。这样的变动当然会对市区住房总面积产生影响——光从1997年金山撤县改区起算,到2002年上海先后有松江、青浦、奉贤、南汇等整区建制的2000多万平方米的原县属城镇居民住宅面积并入了市区居民住宅面积,而崇明县的镇建制住房也有305万平方米在2003年并入市区住宅面积。上海2002年的居住房屋总面积比1997年多了12677万平方米,减去5434万平方米的空置住宅、拆迁住宅面积,余下的住宅增加面积是7243万平方米,这其中22%是原县属镇居民住房划并为城区居民住房所致。显然,这些因行政区划变动带来的城区住房面积增加不能视作“住房改革的成果”,不能视作“居民居住水平提高”的佐证。
笔者再根据第五次人口普查数据,计算了各社会层面拥有的房屋资源状况。这个计算揭示了“人均住房指标”已经对国计民生的真实情况产生了误导。在“住房商品化”前后拥有权力资源的家庭集中挤上了“单位分房末班车”,这是导致1998年到2001时上海居民住房面积激增的原因之一。在这个时期,商品住宅还轮不到普通市民来“商品化”——那时普通市民接受的“商品化”,不过是在1998年~2001年差价换房5000户、10694户、16941户、10888户,出售已购公有住宅10155套、19771套、43411套、69832套(见年鉴刊物《上海市房地产市场》)。最多是到1999年底,居民在出售已购公有住房后再购新房时“吸纳新建商品房总建筑面积达250平方米”(《上海房地产市场(2000)》。1999年以后不见有关统计数了,但根据2000年和2001年居民出售已购公有住房560万平方米的数据,那到2001年,全市居民在出售原有公房后再购置的新建商品房不过是10万套左右。这就是住房商品化开始前后上海普通市民消化商品化住房的能力——2001年,上海城市居民中等收入家庭的人均可支配收入是11155元,恩格尔系数是47!
这个时期内销商品房(包括住宅、办公楼、商业用房,住宅面积平均占95%)的出售情况是:1997年出售3.76万套,1998年7.46万套,1999年11.95万套,2000年16.16万套,2001年20.01万套,总共59.36万套。其中外地个人购买6.61万套,本地单位购买4.27万套,本地个人购买48万套(见年鉴刊物《上海市房地产市场》)。注意,1997年到2001年“本地个人”购买的商品房中购买的商品住宅是40万套,而“本地个人”购买的套数其实是有假的,因为从1999年“住房商品化”政策起步开始,就有不少有“实力”有“势力”的单位以事实上的单位出资来为少部分个人购置房产;而各级党政企事业单位负责人,也在此时加紧让自己的住房面积“达标”、“超标”,“达标”、“超标”的标准,是1995年颁布的沪房地改(1995)767号文件《职工家庭购买公有住房建筑面积控制标准》,在这个文件中,明确一般职工、干部和初级技术职称人员可购买公有住房面积的上限是75平方米,科级干部、中级技术职称人员、具有证书的高级工购买上限85平方米,县处级干部、副高级职称人员购买上限100平方米,副局级购买上限120平方米,正局级、正高级和享受正高级待遇的专业技术职称人员购买上限140平方米。购买公有住房面积的前提是要首先住房要达到这个面积标准,不少掌握权力资源者趁机将自己的住房面积大大地上了几个台阶,当他们将自己突击得来的房屋用“购买公用住宅的标准价”买下,他们就拥有了比普通市民多得多的住房资产——他们才是住房商品化的最大得益者。
根据第五次人口普查资料,到2000年为止,上海的中心城区和新建城区共有457.16万家庭户,其中15.5%家庭户(70.6万户)人均建筑面积40平方米以上,这部分家庭户拥有城区35.2%的房屋资源,这些家庭户以国家机关、党群组织、企业、事业单位负责人为绝对主体;而人均建筑面积19平方米以下家庭几乎全都是底层社会普通劳动者家庭,这部分家庭占到城区家庭户总数的53.3%(244.1万户),他们拥有的房屋资源只占到24.8%,当时城区有80万户家庭、225.5万人居住在人均建筑面积8平方米以下的居所,65.2万户家庭、183.1万人居住在人均建筑面积9~12平方米的居所。
在以后的“住房商品化”过程中,“负责人”群体在家庭住房上占有的地段优势更是远远超出了其在2000年时单纯的面积优势,这种地段优势体现的商品化价值远不是面积优势体现的商品化价值所能比拟。因此,不分职别不分区域地段的笼统的全市性的人均住房指标已经失去了统计的意义、公布的意义。
夜上海论坛 需要指出,笔者曾经在有关投资建设统计年鉴(可能是《上海投资建设统计年鉴》?)中见过1994年~1999年的上海市区建筑面积、居住面积、市区人口统计数(见表五),不管数据是否准确,起码,此表将人均居住水平指标是如何产生的过程透明化了。而现在的统计数据对于公众来说,是从根本上缺乏透明度的。此次笔者能把上海的住宅建筑面积和人均住宅建筑面积算到与统计数据差不离,不过是“蒙”对了而已。
原表说明:人均居住面积一般以各类建筑房屋的实际建筑面积乘以各自平面K值折算成居住面积,与市公安局提供的年末长期人口数相除后求得。73年通过房屋普查,以实际测得居住面积计算。
但此表中的“市区人口数”在《上海统计年鉴中》中是找不到出处的。《上海统计年鉴中》提供的1994年到1999年的“非农业人口”与此表中的“市区人口”相比,少则相差4%,多则相差14%,“年末区人口”与此表中的“市区人口”相比,相差得就更多。
夜上海论坛 笔者丛观历年的住房统计数据,发现有的年份以“市区人口数”为人口计算基数(1994-1999),有的年份则以“非农业人口”为计算基数(2003~2005),而更多年份的人口计算基数还无从核对无从查找。这样,上海的人均住房统计指标光是因为“人口数的统计口径不同”,就已经没有可比性了。
夜上海论坛 还有必要认真对待“人均居住面积”、“人均建筑面积”吗?
“人均居住面积”、“人均建筑面积”还能反映绝大部分居民的真实居住状况吗?作为一个公民,笔者提请政府部门变更上海住房指标的统计方法。事实上,这并不是需要白手起家的作业——第五次人口普查已经提供了全国各地的非常详细的住房统计资料,上海当然不例外。一个疑点:第五次人口普查中有关住房的数据为何不见引用?
2000年的全国第五次人口普查提供了非常详细的住房统计资料。这个住房统计资料反映,在2000年,上海中心城区一共有627.92万人,人均建筑面积15.85平方米;新建城区有657.21万人,人均建筑面积27.45平方米,将城区人均建筑面积乘以人数,上海城区范围内的住房建筑面积应该是27993万平方米,比统计部门用因袭下来的统计方法计算出来的面积要多7128万平方米——统计年鉴公布的2000年上海各区的住房建筑面积统计数是20865万平方米。
夜上海论坛 第五次人口普查是“重大的国情国力调查,是和平时期最大的社会动员,涉及到社会的各个方面、每一个家庭和每一个人”,“对于全面实现我国现代化建设战略目标,研究下个世纪的社会、人口变化情况具有重要意义”(见《国务院关于进行第五次全国人口普查的通知》)。通过这样的调查得来的有根有据的数据却不见引用,这又是为什么?
不解決為什麼人的問題,住房改革不可能成功
近年来,有关住房改革是否成功的讨论进行得轰轰烈烈,笔者不讳言,笔者认为住房改革是失败的。即使这样,笔者还没有对上海的居民居住房屋总面积和人均住房面积提出过怀疑,笔者还是相信政府统计部门是在严肃认真的工作态度下科学地得出这些统计数据的。但因为笔者搞笑般地计算了一番上海住房数据竟意外地与政府统计部门的计算结果相同,而这样的计算结果是要让上海的人均建筑面积平添出13.33平方米的,这不由得笔者诚惶诚恐——即使笔者认定住房改革是失败的,也不希望以“统计部门多算人均建筑面积13.33平方米”来作为佐证呀!
夜上海论坛 笔者猜度,目前有关上海的住房数据可能是“数出多门”,却缺乏对这些数据的整体性的把关。国家对房地产宏观调控措施不能从根本上奏效,恐怕与我国的数目字管理的基础还相当薄弱有关。现代化管理的基础一是法治,二是“用数字说话”,从宏观而言,一个国家的基础数据管理情况和应用情况反映了一个国家现代化的水平。第五次人口普查得来的住房数据是基础数据,而怎样对这些基础数据有效管理和应用,则是一个庞大的课题——缺乏管理,数据就只是一堆令人头昏目旋眼花缭乱的阿拉伯数字。
(一)监督得不到有效合理的控制,导致统计工作产生风险我们大家都知道统计数据一般都是反映宏观整体现象,这种宏观整体现象往往都掩盖了事物的个体本质,因此大多数公众与某些部门对它产生怀疑却无从下手去监管,另外统计部门在统计信息时,占有主动权,具有权威性,这种信息的不对称性也容易产生职业道德风险,再有统计部门的垂直领导形式,使其工作都是“上派下行”,从而导致一些统计数据都是现有目标,再有统计,最后达到预期结果,统计工作的这种被动与尴尬已经成为普遍现象,这种从上到下无人监督,无人管理的现象所产生的后果是距离现实在越来越远,“此地无银三百两”的故事距离我们越来越近,社会将进入颠倒是非,真假难辨的恶性循环之中。
夜上海论坛 (二)统计法的力度不够,加速统计数据的风险产生从上边统计风险产生原因我们可以看到都是由于某些政府和个人短期利益的因素,而导致统计产生巨大的风险,这种短期的效益与其产生的长期风险是远远不对称的,但是许多政府与某些单位以及个人却还是选择了这一瞬间的短期利益,这是为何?我们常常听到某些单位或个人由于违反各种会计法、经济法,最后导致严重违反财经纪律、贪污腐化从而导致受到行政法律的制裁,严重者触犯刑法,最高可判无期乃至死刑和罚金。但是统计法律法规却没有这么大的力度,即使提供了虚假数据,即使受到行政处罚,也都是轻描淡写、隔靴搔痒而已,从根本起不到惩戒、震慑和遏止作用,却反而助长了统计数据失真的力度,加速了统计风险的速度。最后形成了“统计统计,三分统计,七分估计”的熟语。这也很好地回答了上述问题产生的根本原因。
二、针对当前我国统计工作职业道德产生的风险应采取的措施
夜上海论坛 (一)全面提高相关业务人员的综合业务素质统计工作涉及面广,对理论知识与实际工作能力要求高,它要求相关业务人员不仅懂得国家的法律法规,而且还要求相关业务人员掌握一定的财务、审计、经济、统计分析等一定理论知识,并且还特别强调了统计人员应该加强爱岗敬业、尽职尽责的职业道德,德才兼备,以德为先的职业道德和业务素质修养永远是统计人员的最起码要求,也是有效地避免统计风险的基本前提,所以统计人员应该通过各种渠道提高自己的综合水平,如参加各种统计相关的考试、学习辅导班以及业务比赛活动,使他们融入当今社会潮流之中,这样可以增强统计人员的自我提升、自我风险保护意识,这也是抵制社会上统计工作不正之风最有效的措施。
(二)政府及主管领导要用正确的发展观去指导统计工作我们大家都知道统计是为政府部门服务的,这是国家参与宏观调控的重要手段,但是在当今的市场经济体制下,以市场微观调控为主,国家宏观调控为辅的理念指导下,统计需要减少政府的干涉,甚至消除人为干预,这样才有助于国家的经济建设。所以各级政府应该转变职能态度,从而合理地引导各级主管领导具有科学的世界观,进而正确指导统计工作,引导宽松的统计工作环境,使统计工作者在良好的工作氛围中,放下包袱,努力工作,为国家制定合理有效的重大决策提供真实的数据,从而真实地反映国家的宏观目标,这样更有力促进社会经济的发展,促进人们的安全、社会的和谐。
(三)加强统计数据的监督反映统计数据失真给统计工作带来了一定的风险与隐患,其最大原因就是统计数据缺乏像会计工作那样的监督机构,另外统计数据的公布也非常笼统化,不如财务指标那样详细,计算方法与方式也不像会计那样进行详细地披露。所以国家应该尽早地出台一些法律法规以及有关政策,让统计部门加大信息披露的力度,如时间间隔应该缩短,披露的数据来源、方法、处理的过程等统计信息应该详细,让数据的使用者与监督者能够很好地分析数据的真实可靠程度,这样不仅增强了统计的公众监督力度,又有利于公众对统计的了解与认可,进而也让统计工作者工作起来有的放矢,避免了其左右为难的工作情绪,更避免了统计工作的重大隐患风险的存在。
(四)加强统计法律法规建设,完善统计规章制度目前国家对会计、经济等各种法律法规都进行了不断的完善与调整,此种方式方法得到了有效的反映,如偷税漏税逐步减少,行贿受贿、大吃大喝公款的现象极度收敛,这样不仅促进国家经济的发展,也受到了百姓的拥护与好评。那么如果在这种良好的氛围下,大力加强统计法律法规的建设,对那些原来不合理、不完善、不适合市场经济体制下的统计法律法规及规章制度进行删除或者合理的更新,并加以完善和必要的补充,如加大对政府与部门人为反方向干扰统计工作的监督与惩罚,加大胁迫统计工作者编制虚假数据而承担的法律后果,以及统计工作者在此过程中给予抵制而受到的奖励制度和听之任之、同流合污而承担的法律后果等等规定。这样统计工作者才能坚定地拿起法律的武器来保护自己,使自己勇敢地面对不法分子坚持真理,永不胆怯。因为谁也不能拿自己的一生和终身的家产去赌注,迫使不法分子没有可乘之机。这是杜绝统计工作职业道德风险,强化统计职业道德意识最有效的措施。
夜上海论坛 三、结束语
金融风险度量的统计分析方法的研究很多,分析方法都是从不同维度进行筛选。现对常用的几种方法进行详细的分析。
夜上海论坛 (一)金融风险方差度量的分析方法及其改进此方法是最早采用的分析方法,它主要采用方差的方法对金融数据进行计算,从而得到方差,通过方差的大小进行评价。此方法容易让人理解,也好操作,由于其的适用性广,简便性强,在各个金融机构都是很常用的方法。但由于其计算的复杂,人们正在对其计算进行摸索研究,后来对方差方法进行了改进,发现了下侧风险的分析方法,通过计算下半方差来对风险进行评价,但因为计算设计的不合理的问题,也会对金融风险度量的分析带来不便,此方法也需要进行改进。
(二)金融风险度量的灵敏度分析方法灵敏度分析方法是对金融风险度量的线性度量,它测定的是市场因子的变化与证券组合价值变化的关系。常在固定资产市场、股票市场和衍生工具市场中使用,“凸性”代表了衡量利率变动时长期的变动,“伽玛”是在反应衡量标的资产变动的情况下“德尔塔”的变动。“凸性”和“伽玛”两个指标都是只度量一个金融变量中二阶金融风险的大小。此分析方法在使用的过程中也存在一定的问题,如局部的分析变化、对产品类型太过依赖,不能在所有产品中使用、分析出的数据不稳定大,也会出现风险等对此分析方法的推广使用上不可靠,也限制它的广泛使用。
(三)金融风险度量的VaR分析方法及其改进VaR的分析方法是现在一种新发现的金融风险度量的分析方法,相比以前的分析方法,具有更广泛的用途,可在不同金融市场中进行评价;容易让人接受,可以短时间内进行操作,但此分析方法也有一定的不足,此分析方法适合在没发生危险的市场中,当极端危机出现时就不能正确评估,对数据的分析不能全局分析等,这些分析的缺陷促使对其进行改进,出现了极值分析方法、半参数分析方法,这些分析方法都是利用观察到的尾部分布的指数特性来估计。这些分析方法都是在前人研究的基础上进行摸索研究而得到的,但每种分析方法都不是最先进,随着金融问题的越来越复杂,也会有更新的方法出现。
夜上海论坛 二、多维度金融风险度量的统计分析方法实例分析
金融风险度量的统计分析方法随着时代的变迁也在不断的改进,每种金融风险评价模型都是通过分析方法进行验证的,采用VaR的分析方法对我国金融机构中2004-2012年间5个维度金融风险度量进行分析。对金融风险度量进行5个维度进行评价,如宏观经济维度、银行与货币维度、泡沫维度、外部冲击维度和债务维度进行综合评价后进行VaR方法的计算,得到的结果见表1。从表中可以发现:宏观经济维度的金融风险的VaR值在[0,2]之间,说明其不同年份中波动性相对于其他几个维度的变化是最小的;银行与货币维度风险的VaR值在[0,5]之间,说明其不同年份中波动性是比较大的;泡沫维度风险的VaR值在[0,6]之间,说明其不同年份中波动性也是较大的;外部冲击维度风险的VaR值在[0,8]之间,说明其不同年份中波动是最大的;债务维度风险的VaR值在[0,3]之间,说明其波动性也是比较小的。
三、结语