前言:我们精心挑选了数篇优质中学数学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
在中学夜上海论坛数学的教学中,对“数形结合”、“由形到数”,解题时可以观察图形的特征以及数量关系。“数”“形”“数形结合”思想不仅对于学生掌握知识变得统一,更是一种思维的训练与提高的过程。函数的单调性解决不等式、函数与数列、函数的思想对于解决方程根的分布问题。函数与解析几何等等都会应用到。但是传统的教学中,重视表层知识的学习的现象弊端太多,数学学科是一种抽象思维的学习学科,不同于语言思维,过于感性化,不够严谨与理性,而数学思维是抽象性、理性严谨的知识体系学科,如果不注重思维学习的方法,是不能达成教学效果和目标的实现的,不利于对于数学学科的学习,难以提高。
2.“数形结合思想”在实际生活中的应用
将实际问题转化,运用数形结合的思想去解决。“数形结合”思想可以帮助理解抽象的问题,会在实际生活中有很大的应用。“数形结合”的思想不仅在教学中有用,利用数形结合的思想来解决现实生活中的问题有很大的帮助。例如:对于在实际生活的中,需要地域500元购入60元的单片软件3片,需要购入70元的磁带2个,额选购方式有几种?其实这样的题目就是对于数形结合思想、排列以及数学中不等式的解法的考查,那么只要设需要软件x片,需要磁带y盒,然后列出不等式,相反,如果用列举法一一列出,是可以解决的,但是过程就会变得麻烦。因此,掌握数形结合思想对实际问题的解决作用是很大的。
3.“数形结合思想”在几何当中的应用
夜上海论坛 中学数学中对于“数形结合”思想对于直线、四方形、圆以及圆锥曲线在直角坐标系中的特点,都可以在图形中寻找解题思路。不论是找对应的图像,以及求四边形面积等的几何问题都有很大的应用。例如:已知正方形ABCD的面积是30平方厘米,E,F是边AB,BC上的两点,AF,CE并且相交与G点,并且三角形ABC的面积是5平方厘米,三角形BCE的面积是14平方厘米,要求的是四边形BEGF的面积。在求解过程中,结合图形,连接AC\BG并设立方程可巧妙求解。可见,在具体实际的几何中的分析与思考,运用到数形结合思想就会将问题变得简单。
4.结语
1.一致性原则
夜上海论坛 分类应该按同一标准进行,也就是每次分类不能使用几个不同的分类根据。例如:把三角形分为等边三角形和不等边三角形是按边分类的。但是直角三角形、钝角三角形、锐角三角形、等腰三角形、等边三角形,这种分类就不正确,此种分类既是按边分类也按角分类。
2.相斥性原则
夜上海论坛 分类后的每一个子项应具备互不相容的原则,也就是不能出现有一项既属于这一类又属于那一类。例如学校举行运动会,规定每个学生只能参加一项比赛,初一三班的6名同学报名参加200和400米的赛跑,其中有4人参加200米比赛,3人参加400米比赛,那么就有1人既参加200米又参加400米比赛,这道题目的分类就违背了相斥性原则。
3.完善性原则
分类应当完善,即划分后子项的总和应当与母项相等。如:有人把实数分为正实数和负实数两类,这个分类是不完善的,因为子项的总和小于母项。事实上实数中还包括零。
4.递进性原则
夜上海论坛 分类后的子项还可以继续再进一步分类,直到不能再分为止,层次分明。例如实数可以分为无理数和有理数,有理数还可以分为整数和分数,整数又可以分为正整数,零和负整数。我们在运用分类讨论的思想解决问题时,首先要审清题意,认真分析可能产生的不同因素,进行讨论时要确定分类的标准,每一次分类只能按照一个标准来分,不能重复也不能遗漏,另外还要逐一认真解答。
夜上海论坛 二、分类思想在初中数学教学中的应用
1.概念分类
例如在学习完负数、有理数的概念后,针对于不同的标准,有理数有多种的分类方法,若按定义来分类有理数可以分为分数和整数,分数又可以分为正分数和负分数,整数又可以分为正整数、负整数和零;若按正负来分类有理数可以分为正有理数、负有理数和零,正有理数又分为正整数、正分数,负有理数又分为负整数、负分数。
2.在解题方法上分类讨论
例如:解方程∣x+3∣+∣4-x∣=7解析:对于绝对值问题,往往要对绝对值符号内的内容分为正数、负数、零三种,在此方程中出现两个数的绝对值;∣x+3∣和∣4-x∣,∣x+3∣应分为x=-3,x<-3,x>-3;∣4-x∣应分为x=4,x<4,x>4,在数轴上可见该题应划分为三种情形:①x<-3,②-3≤x≤4,③x>4。解:①若x<-3,化简-(x+3)+4-x=7得x=-3,与x<-3矛盾,所以x<-3时方程无解。②若-3≤x≤4,原方程x+3+4-x=7恒成立,满足-3≤x≤4的一切实数x都是方程的解。③若x>4,化为x+3-(4-x)=7,得x=4,与x>4矛盾,所以x>4时无解。综上所述,原方程的解为满足-3≤x≤4。3.在几何中图形位置关系不确定的分类:例如:已知a的绝对值是b绝对值的3倍,且在数轴上a、b位于原点的同侧,两点之间的距离为16,求这两个数;若数轴上表示这两数的点位于原点两侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的同侧”意味着甲乙两数符号相同。那么究竟是正数还是负数,我们应该用分类讨论的数学思想解决这一问题。解:由题意得:∣a∣=3∣b∣,∣a-b∣=16
(1)数轴上表示这两数的点位于原点同侧:若a、b在原点左侧,即a<0,b<0,则-2b=16,所以b=-8,a=-24若a、b在原点右侧,即a>0,b>0,则2b=16,所以b=8,a=24。
让学生快乐成长,主动积极地学习。要彻底改变这种现象,让事物适应时代和发展规律,就需要教师形成一切以生活为本,以学生为主的新的教育思路。新的课程改革,改变的不仅是学生、教师、学校,还有整个社会对人才的要求。如何才能培养社会需要的人才?如何才能提高学生的自身能力与素质?学生能力的提升,也会反过来刺激新课改制度的不断完善。
夜上海论坛 二、在新课改下培养学生能力的途径
(一)养成良好学习习惯,提高学生自主学习能力
夜上海论坛 好习惯成就好人生,习惯的好坏对一个人的成败起着关键作用。同样,学习也是这样,要想提高学生的自主学习能力,好的学习习惯是能否成功的关键条件。首先,让学生养成好问的习惯。通过鼓励学生开口问问题,可以激发学生的学习兴趣,从而主动积极的学习。例如,在教授初一教材第八章“二元一次方程组”的时候,可以首先通过学生自己提问,二元一次方程与我们前面学的一元一次方程,有什么共同点和区别,从而激发学生的学习兴趣,让他们自己主动积极地学习。其次,让学生养成总结反思的习惯。古人云:“学而不思则罔,思而不学则怠。”人们总是在思索中前进,归纳和总结自己身上的不足,从而找出解决的办法,实施下去。在发展中不断地完善自己,不断地提升自己。由此可见,总结、反省是让人学会学习的关键所在,在教学中通过归纳,整理便能提高学生自主学习能力。再次,养成严格要求自己的习惯。强烈的自律性,求知欲等都能让学生养成自主学习的能力,教师只要抓住时机,给予引导,一定能提高学生的自主学习能力。
(二)训练思维能力
夜上海论坛 中国古代教育提倡“技长者以为师”,说的就是教师要教授别人,首先自己的知识得丰富,可以说明教育者本身就必须具备一定的素养。如今,科学技术飞速发展,教书育人,传授知识,不仅体现在教师的基本素质技能过硬,还体现在能够科学地指导、引导学生正确思考,培养学生思维能力,从学会转变成会学,从而提高学生能力的专业技能。思维能力,指的就是学生面对问题时,那一瞬间的想法,他们会怎么办?当面对困难时,首先通过观察事物的特征,了解事物的各种性能,再把已知材料通过对比分析,总结归纳,然后想出解决问题的方法和策略。它的基本形式包括概念、判断和推理。在具体的教学工作中,怎样才能使学生逐步养成学习的思维能力,要求教师要从思维的模式上去探索,去引导。从现象的分析对比中,得出初步结论,并在头脑中升华,做出总结概括,然后判断推理,从而指导行动。比如,在讲授“有理数与无理数”的时候,教师就可以通过复习一下整数,分数的概念,引导学生去分析,去对比他们之间有什么差异。紧接着列出有理数的概念、范围,再出示无理数,逐步引导学生先分析,对比,再做出概况,然后具体化。通过一系列的讲解及课后的辅导及复习,学生就会对有理数与无理数部分的知识结构掌握得更加清晰。
夜上海论坛 (三)理论与实践结合,体现学生的能动性