夜上海论坛前言:我们精心挑选了数篇优质概率统计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
夜上海论坛 1激振信号自相关特性
夜上海论坛 为了探讨危岩突发性破坏产生的激振信号在不同时刻的相互依赖关系,即激振波的周期性特征,可对激振信号进行自相关分析。可看出实验条件下危岩破坏激振信号自相关性具有如下特征:
(1)危岩破坏y方向激振信号的自相关系数幅值大于x方向激振信号的自相关系数,如与激振源第11#危岩块相邻的第12#危岩块中部的1#测点量测的y方向自相关系数约为100,而y方向自相关系数为49,约为y方向的0.5倍,而位于第13#危岩块的2#测点记录的y方向激振信号的自相关系是x方向激振信号自相关系数的5.6倍。激振信号自相关系数越大,表明危岩破坏产生的激振信号对时间的依赖性越明显。
夜上海论坛 (2)危岩块之间界面的完整性对激振信号自相关系数出现频率的影响是显著的,界面越完整,激振信号自相关系数变化频率越高,波形越密,如位于第12#危岩块的1#传感器和位于第13#危岩块的2#传感器记录的激振信号自相关系数频率明显大于位于第22#危岩块的3#传感器记录的激振信号自相关系数变化频率。
夜上海论坛 (3)危岩块之间界面的完整性对激振信号自相关系数持续时间的影响也比较显著,危岩块之间界面的完整性较差时激振信号衰减所需时间越短,如位于第12#危岩块的1#传感器和位于第13#危岩块的2#传感器记录的激振信号自相关系数持续时间均在20ms左右,而位于第22#危岩块的3#传感器记录的激振信号自相关系数约为15ms。
2激振信号统计特征
实验条件下测试的危岩破坏激振信号为激振加速度,给出了1#、2#和3#测点x方向(水平方向)和y方向(竖直方向)激振信号的均值、有效值和标准偏差统计数据,
夜上海论坛 (1)各测点x方向激振信号的均值、有效值及标准差均小于y方向的数值,表明危岩破坏瞬间产生的激振信号的强度在y方向表现得较为显著,其中激振信号均值的负号表征激振作用的方向竖直向下。
(2)距离激振源越近,激振信号强度越大,如第12#危岩块邻近激振源,位于第12#危岩块的1#测点的激振信号的有效值明显大于位于第13#危岩块中部的2#测点和位于第22#危岩块中部的3#测点的激振信号的有效值。
(3)2#和3#测点与激振源第11#危岩块之间的距离虽然相同,但是由于2#测点所在的第13#危岩块与1#测点所处的第12#危岩块之间的主控结构面存在非贯通段,而3#测点所在的第22#危岩块与1#测点所处的第12#危岩块之间属于较紧密结合的岩层界面,如2#测点y方向的有效值明显大于3#测点y方向的有效值,表明激振信号强度穿过非贯通段时耗散量要小于穿过岩层界面时的耗散量,换言之,危岩块之间的完整性越好,越利于激振信号的传递。
(4)每个测点y方向的标准差均大于同一测点x方向的标准差,测试点与激振源之间的距离及激振信号传递路径中危岩体之间的完整性对激振信号标准差有一定影响,测试点与激振源之间的距离较小时,激振信号标准差反而较大,激振信号传递路径中危岩体之间的完整性较差时,激振信号标准差反而偏小,这一现象似乎有悖常理,可能与危岩突发性破坏产生的噪声有关,尚需要做进一步分析论理。
二结论
激振效应是危岩破坏瞬间释放出的能量向四周传播表现出的动力学现象,可用激振加速度表征危岩破坏激振信号,劣化相邻危岩块的稳定性态。基于坠落式危岩室内模型试验,本文对激振信号的概率统计特征进行了分析,得到如下主要结论:
夜上海论坛 (1)激振信号具有一定自相关性,用自相关系数表征。自相关系数越大,表明激振信号对时间的依赖性越明显,且竖直方向激振信号的自相关系数大于水平方向激振信号的自相关系数,如3#测点记录的激振信号竖直方向自相关系数是水平方向自相关系数的5.6倍。
夜上海论坛 (2)危岩破坏瞬间,距离激振源越近,激振信号的均值、有效值和标准差数值越大,且竖直方向的量值大于水平方向的量值。
夜上海论坛 (3)实验条件下激振信号的概率密度呈现单峰型近似正态分布,表明危岩破坏所释放的能量具有点荷载特征,概率密度水平方向的峰值强度大于竖直方向的峰值强度,如3#测点水平方向峰值强度是竖直方向峰值强度的1.6倍。
现有的概率论与数理统计教材中,概率部分比重较大,统计部分只涉及简单的参数估计、假设检验以及回归分析的内容,但这些远远无法满足各个专业学生的要求。我们要研究如何把统计学普及化,编写以统计为主、概率论为辅的教材,引入在自然科学、社会经济领域内目前应用十分广泛的,而在概率统计课中没有讲授的相关分析、方差分析、主成分分析、因子分析、聚类分析、秩和检验等内容,但诸多方法的引入必将导致内容大量增加,所以在引入时一定要注意:第一,不能涵盖所有的统计方法,要进行取舍,针对不同专业学生的需求,在教材中适当选择学生必需的一些简单的非参数和多元统计方法;第二,每一种方法的引入不能力求使学生完全掌握统计方法的原理,尤其是借助于适当的统计分析软件进行操作实践,并不是说将理论完全掌握后才能够进行统计分析,而是两者可以做到相辅相成。第三,想方设法让学生不用或少用微积分和线性代数知识就把统计方法学会。
二、弱化统计方法计算过程的阐述,加强方法背景、用途的介绍,增强课程的应用价值
夜上海论坛 教师对工科大学学生的授课要将概率统计定位于工具,在讲授的过程中应立足于应用,对于各种统计方法的教学,要努力帮助学生了解方法的背景、条件和用途,即重点解决有何用,如何用,何时用的问题。方法的实现则交给现有的统计软件。每一种方法都可从实例中引出,从简单到复杂,同时尽可能地联系生产实际,贴近学生专业学习,课程的应用性加强了,通过自己的实际操作,解决身边的统计问题的,既锻炼学生统计建模的能力,又能激起学生浓厚的学习兴趣。
三、相关统计应用软件知识加入,培养统计建模能力
按照应用性为主的教学目的要求,在概率论与数理统计教学过程中,应该以培养学生应用概率论与数理统计方法解决实际问题的能力为出发点,使学生掌握概率论的基本知识和理解统计方法的基本思想,并将理论的学习转化成一定的统计应用能力。随着目前统计工作所面临的数据日益庞大,传统教学中的计算公式已经很难使用手工计算的方式进行求解,因此借助于计算机及统计软件完成统计计算,分析统计结果、做出统计推断便成为统计教学中不可忽视的一个手段。使用软件辅助概率论与数理统计的教学能使课程中的数据处理和数值计算更简易、更精确。伴随着计算机技术及数学软件的发展,使得诸多的统计分析借助数学软件得以实现,如参数估计、假设检验、方差分析和回归分析等计算问题,也无需担心大量的统计数据带来的计算量等问题。同时,在高等教育统计教学中应用统计软件,有利于培养学生学习统计、计算机及软件等专业课的兴趣,提高学生的计算能力和利用专业知识解决实际问题的能力,科学整合统计教学内容,促进统计教学面向社会需要,提升学生的实践能力。在教学中进行软件的训练也能为学生将来的工作打下初步的基础,为了更好进行概率论与数理统计的教学和实践,近年来新编教材也增加了数学软件的内容,在概率论与数理统计课程教学中使用数学软件已成为改革发展的趋势。在课堂教学中,为了让学生加深对理论的理解,实践环节的设置变得非常关键,概率论与数理统计课程中加入数学实验能很好的填补学生在理论和实践之间的空白。数学实验的开展可以在数学教育中体现学生的主体意识,让学生做到边学边用,提高学生学习的趣味性、体现数学教育的时代性。因此,将数学实验融入概率论与数理统计教学,是概率论与数理统计教学改革中非常值得探讨和研究的课题。根据概率论与数理统计课程的特点,数学实验的内容设计可以和案例教学方法进行有机结合。案例式教学能解决概率知识综合运用的问题,能丰富课程内容、加深学生对知识的理解。教学案例能将所学知识有机联系起来,使课程的各部分不再是孤立的,通过对案例设置问题的求解,便能使学生完成由学概率论与数理统计理论到用概率论与数理统计解决问题的转变。在解决实际问题的过程中辅以软件进行数值计算试验,能最大限度发挥软件的优势,使学生学以致用,将理论学习与实际应用有机结合起来。在传统概率论与数理统计教学过程中,概率论与数理统计课程计算量大一直是困扰课堂教学的难点问题,如二项分布,若试验次数较多,其中的具体概率计算将变得十分复杂。复杂的计算往往使得教师的教学重点发生偏移,侧重课后习题计算的处理,使得课程的设计重点偏向排列组合公式的计算。另外在教学过程中,前后知识的联系对初学者也是一个障碍,比如条件概率等基本公式在讨论多元随机变量时还会用到,但在教学实践中我们会发现,由于缺少互相联系的教学实例,学生一般都是将这两部分分开来学习,不习惯将前面的知识和随机变量进行有机结合。因此设计恰当的案例,将知识前后贯通是教师面临的重要任务。
2软件介绍
在强调学生为主体的实践式教学设计中,教师设计案例的求解一般要选择合适的软件进行辅助,当前数学软件众多、功能强大,如综合性软件Mat-lab,统计专业软件SPSS、SAS等。对于专业数学软件一般要先进行软件的学习才能用来解决实际问题,对于概率论与数理统计这样一门独立的课程,显然不宜专门来进行软件的培训,为了应对实践教学课堂应用,简单易学且容易配置的软件能最大限度实现教学任务。在此以Excel为例介绍案例式教学和利用Excel进行软件试验的一点尝试。Excel使用简便,基本不涉及程序的编制,在图形化界面下进行操作,且具备有强大的图形功能,便于概率结果的呈现和分析。Excel有丰富的概率函数,能帮助用户进行各种类型的概率计算,或进行随机模拟来学习概率论与数理统计。Excel可以计算大部分常用理论分布的概率密度函数PDF、累积分布函数CDF以及模拟产生服从常用概率分布的随机数据。如果能够正确使用,Excel可以成为非常强大的学习工具。选用Excel作为概率论与数理统计教学辅助软件的另一个原因是作为微软Office工具之一,大部分学生均了解Excel的使用,因此不用进行软件的教学即可用来解决实际问题,在学习过程中也能进一步促进学生对软件的使用增强他们解决实际问题的能力。下面介绍一个利用Excel辅助的案例式实验教学设计实例。为了使数学实验背景贴近学生的学习生活,以考试中选择题成绩分析为例。背景分析:考试是每个学生都经历的学习过程,其中选择题是经常遇到的类型,选择题的设计与概率知识之间有密切的关系。通过与学生密切相关的问题引入概率教学,能极大激发学生的学习兴趣。问题设计:选择题在解答时不同于填空题或者解答题,因为在完全不会的情况下仍有可能靠猜测得到正确的答案,那如何来评估选择题在考试中的效度,可以使用什么样的概率论与数理统计的基本知识予以研究?
3实验教学案例设计
夜上海论坛 首先提出基本假设,考试时一个选择题有4个选项,仅有一个选项是正确的,如果不会做就随机作答,因此在不会做题的情况下随机选择答案有25%的可能性得到正确答案,即从卷面上看该题做对了,对于老师来说,按照成绩评价学生实际知识水平非常重要,因此需要评估在答案正确的前提下求学生实际会做该题的概率。图像显示出选择题答案正确而显示被试者会做该题的概率一直大于被试者实际会做该题的概率,说明选择题容易高估被试者的水平,为了有效区分被试者的不同程度,需要适当调节题目的难度来区分被试者是不是真的会做。作为一个例子,若学生会做与不会做的概率相同,取x=0.5,则容易计算出P(A|B)=0.8,即实际会做概率为0.5时,选择题表现出来的得分可能为0.8分。对于数学实验来说,让学生自己对该案例进一步讨论,亲自实践在软件辅助下的概率解题,对促进学生将理论用于实际非常重要。在课堂讲授的基础上,可以将学生自学内容引申到用随机变量的分布律和分布函数来研究在实际考试中选择题得分情况演示,结合二项分布理论研究选择题对学习评价的情况。评价借助于Excel软件设计如下实验。假设某项考试由100道选择题组成,每道题1分,学生会做该题的概率为x(实际问题中相当于难度系数为1-x),当x=0的时候,被试者对考试内容完全不会,每题都随机选择,可以看成服从参数为(100,0.25)的二项分布,使用Excel中的BINOM-DIST()函数进行二项分布概率密度值和分布函数值的计算来演示考试结果。函数用法为:BINOM-DIST(k,n,p,FALSE/TRUE),其中k表示回答正确的题目数量,可以使用单元格自动生成,n,p为二项分布的参数。n表示总试验次数,p表示每次试验中事件出现的次数即答对题的概率。后面的参数FALSE/TRUE用来说明是计算概率密度函数和是计算分布函数。如BINOMDIST(A2,100,0.25,FALSE)表示对A2单元格中的自变量计算参数为(100,0.25)的二项分布概率密度函数值。使用Ex-cel的自动填充功能,便可方便生成该二项分布的概率密度表。为方便调节二项分布参数,可以将参数(n,p)用单元格的绝对引用代替,改变参数单元格的数值就能得到不同二项分布的概率密度表格。Excel还可以对概率密度表和分布函数表生成条形图和线图,若试题难度系数0.5,学生事实会做的题目应该有50道,因此会做的题目有50道,另外不会做的随机选择,正确率0.25,因此回答正确的题数为12.5,两者相加可知最终得62.5分的概率最大。
4结束语